本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

报码:【j2开奖】对话|俞栋:在人工智能的很多应用场景,语音识别是一个入口(5)

时间:2016-11-02 05:44来源:报码现场 作者:www.wzatv.cc 点击:
俞栋 :除了前面提到的 LF-MMI 、 Deep CNN(包括我们最近发表的 LACE 模型)和 Permutation Invariant Training,另外一个比较有意思的论文是 MERL 在 arXiv 上发表的一

俞栋:除了前面提到的 LF-MMI 、 Deep CNN(包括我们最近发表的 LACE 模型)和 Permutation Invariant Training,另外一个比较有意思的论文是 MERL 在 arXiv 上发表的一篇文章。他们结合了 CTC 和 attention-based model,利用这两个模型各自的长处来克服对方的弱点。

记者:您是怎么看待监督学习、半监督学习和无监督学习这三个学习方式呢?

俞栋:监督学习是比较 well-defined,有比较明确的任务。目前来讲,深度学习对这一类问题效果比较好。

无监督学习的目的是要寻找数据中的潜在规律。很多情况下,它试图寻找某种特征变换和相对应的生成模型来表达原始数据。但无监督学习不仅本身困难,对无监督学习系统的评价也很难。原因是通过无监督学习找到的规律不一定对你将来的任务有帮助,或者它对某一任务有帮助,换一个任务就没有帮助了。当然,如果你的目标仅仅是数据压缩,评价还是容易的,但我们使用无监督学习压缩本身往往不是主要目的。

记者:那半监督学习呢?

俞栋:半监督学习介于两者中间。因为你已经有一部分标注信息了,所以你的任务是明确的,不存在不知如何评估的问题。半监督学习在实用系统里还是有一定作用的。比如说我们需要标注大量数据来训练语音识别系统,但人工标注既花时间又花钱,于是你往往有比标注数据多得多的未标注数据。没标注过的数据,也有很多可以利用的信息,虽然它们的价值远远小于标注的数据。半监督学习对我们的系统性能有一定的提升。

报码:【j2开奖】对话|俞栋:在人工智能的很多应用场景,语音识别是一个入口

记者:最后一个问题,在整个人工智能的布局上,您认为语音识别是一个怎样的定位?

俞栋:在很多应用场合,语音识别是一个入口。没有这个入口的话,大家都会觉得这个智能机器不够智能或者与这个智能机器交互会有困难。在人机交互中语音识别是第一步如果语音识别做得不够好,那后期的自然语言理解等的错误率就会大幅上升。这也是为什么语音到语音的翻译要比文本到文本的翻译难很多,因为在语音对语音的翻译系统里语音识别产生的错误会在后面翻译的过程中放大

同样,从历史上看,语音识别也为机器学习和人工智能提供了很多新的方法和解决方案。比如语音识别里的关键模型 Hidden Markov Model 对后来机器学习的很多分支都有帮助。深度学习也是先在语音识别上取得成功,然后才在图像识别和其他领域取得成功的。

  END

你也许还想看:

  

  

  

【二十一世纪的计算首尔现场直播】

“二十一世纪的计算”学术研讨会是微软亚洲研究院的年度学术盛会。作为中国及亚太地区规模最大最具影响力的计算机科学教育与研究盛会之一,该大会已在中国、日本、韩国、新加坡等多个国家和地区成功举办了17届。2016年11月3日,大会将来到韩国首尔举行。

在本次大会上,微软亚洲研究院的研究院人员将与包括2002年图灵获得者Adi Shamir在内的学术界领军人物们一道,深入探讨人工智能与人类智慧的结合下,从而改变社会的无限潜能。我们将对本次会议以微信群分享的方式进行现场直播。名额有限,快扫描下图二维第一时间收看直播吧!

感谢你关注“微软研究院AI头条”,我们期待你的留言和投稿,共建交流平台。来稿请寄:[email protected]

  微软小冰进驻微软研究院微信啦!快去主页和她聊聊天吧。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容