本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

wzatv:【j2开奖】【研究员视角】大牛带你读论文|自然语言处理(2)

时间:2016-10-26 06:15来源:本港台现场报码 作者:j2开奖直播 点击:
第四篇工作关于华为诺亚方舟实验室神经网络机器翻译方面的研究工作,题目是“Modeling Coverage for Neural Machine Translation”。多年来,机器翻译研究的热点集

第四篇工作关于华为诺亚方舟实验室神经网络机器翻译方面的研究工作,题目是“Modeling Coverage for Neural Machine Translation”。多年来,机器翻译研究的热点集中在以IBM 模型演化而来的统计机器翻译,随着数据规模的增长,在过去的十多年中,统计机器翻译的性能取得了大幅度的提升,各种模型算法也层出不穷。近年来,神经网络深度学习的发展逐渐成熟,在语音图像文本的处理中大行其道,也取得了长足的进步。相比于传统的统计机器翻译,神经网络机器翻译无需考虑两种语言的词汇对齐,同时将翻译模型、语言模型、调序模型等统一整合至基于循环神经网络的Encoder-Decoder框架当中,直接端到端(end-to-end)生成翻译结果,做到了语言无关,优势明显。目前,虽然神经网络机器翻译系统的水平已经超越了传统统计机器翻译,但其本身仍然存在一些问题需要解决,例如过度翻译(over-translation)和翻译不足 (under-translation)的问题。这是由于目前的神经网络机器翻译系统采用了基于注意力(attention)机制的循环神经网络,在翻译的过程中历史的注意力信息往往被忽略。文章的主要贡献在于设计了一种循环神经网络的注意力覆盖向量(coveragevector),用于记录翻译过程中的历史信息,帮助翻译过程根据源语言更好的生成翻译结果。实验表明,这种添加了覆盖向量的模型在翻译质量上超越了传统的神经机器翻译方法。

第五篇是加拿大蒙特利尔大学和IBM T. J Watson Research深度学习方面的研究,题目是"Pointing the Unknown Words”。熟悉深度学习在自然语言处理领域应用的人都知道,当前由于深度学习计算的时间与空间,以及自然语言处理本身的特性,大多数的自然语言处理的模型都面临着未登录词(OOV)的问题。这篇文章针对Sequence-to-Sequence生成中未登录词的问题,提出一种基于注意力机制(attention)的神经网络结构,用以解决深度学习中低频词的处理。具体来讲,作者利用两个Softmax层预测语言模型中的下一个词,其中一个Softmax层用于预测Seq2Seq源端词的位置,另一个Softmax层用于预测Seq2Seq目标端候选名单中的词。在神经网络计算的每一个时刻,通过将上下文信息(content)输入另一个多层感知机网络(MLP)来决定具体使用哪个Softmax来产生结果。作者在英法机器翻译和自动摘要两个任务上测试了该方法,模型的性能都得到了稳定的提升。近来人们对于处理深度学习中未登录词的问题十分关注,在ACL2016会议中,还有多篇文章涉及到这个话题,例如华为诺亚方舟实验室的“Incorporating Copying Mechanism in Sequence-to-Sequence Learning”和爱丁堡大学的“Neural Summarization by Extracting Sentences and Words”,感兴趣的同学可以关注一下。

  

wzatv:【j2开奖】【研究员视角】大牛带你读论文|自然语言处理

最后一篇文章来自微软亚洲研究院自动聊天机器人方面的研究,题目是“DocChat: An Information Retrieval Approach forChatbot Engines Using Unstructured Documents”。提到聊天机器人,大家可能会想到非常火的一款聊天机器人产品“微软小冰”,“微软小冰”通过在大数据、自然语义分析、机器学习和深度神经网络方面的技术积累,通过理解对话的语境与语义,实现了超越简单人机问答的自然交互。目前自动聊天机器人的训练数据绝大多数来自互联网社区和社交网络中的公开数据(问题答案或者聊天回复),虽然规模很大,但是形式较为单一。文章的主要贡献在于通过挖掘分析大规模非结构化文档,利用文档中的内容与用户进行聊天交互,这样一来大大突破了传统聊天机器人可利用的数据边界,极大地丰富了聊天内容库。作者通过抽取不同粒度的特征用以表示用户所说的话与机器人回复之间的相关性,同时利用机器学习中的经典算法排序学习(Learningto Rank)对不同特征予以整合。实验结果表明,这种方法在英文和中文的测试中都表现出很好的效果,可以与传统自动聊天机器人进行有机结合,提供更好地聊天回复。

  原文链接

Finding Non-Arbitrary Form-Meaning Systematicity Using String-Metric Learning for Kernel Regression:

  ~bkbergen/papers/smlkr_final.pdf

On-line Active Reward Learning for Policy Optimisation in Spoken Dialogue Systems:

  https://arxiv.org/abs/1605.07669

A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task:

  https://arxiv.org/abs/1606.02858

Modeling Coverage for Neural Machine Translation:

  https://arxiv.org/abs/1601.04811

Pointing the Unknown Words:

  https://arxiv.org/abs/1603.08148

DocChat: An Information Retrieval Approach for Chatbot Engines Using Unstructured Documents:

  

  作者简介

wzatv:【j2开奖】【研究员视角】大牛带你读论文|自然语言处理

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容