我们应该把目标置于一种不同的透明性。当出现问题时,atv直播,用户应该能够检查系统并发现故障的位置;当工作正常时,系统应该能够向用户提供有意义的反馈以供改进。这些反馈应该与我们的经验有关,进而与人类对这种现象的看法有关。 有人认为透明性不是必须的。我们也不理解人体解剖学和人类神经结构,但我们的身体也好好地运行着,并不责备我们对身体的浅薄理解。同样的道理,这些人认为,直播,为什么不解开深度学习系统的束缚,让它们创造智能,而我们不必理解它们是怎么做的。我个人是不喜欢这种不透明性,这也是我不花时间去研究深度学习的原因。深度学习自有它的作用。不透明的系统可以做一些非凡的工作,而我们的大脑就是很好的证明。 我试图理解这些系统的理论局限性。我们发现,例如,存在一些基础性的障碍,除非能打破这些障碍,否则我们无论怎么做都无法得到真正的人类智慧。这是我目前的兴趣所在。 我很钦佩一些人,像Michael Jordan和Geoffery Hinton。他们创造了用于物体识别和文本识别的非常好的视觉系统。这很让人感佩。但它能走多远?它有哪些理论限制,我们该怎么克服这些限制?我们现在对因果关系的研究强调需要克服的一些基本性限制。其中之一是自由意志,其余是反事实思维,以及因果性思考。理论上,你无法只从统计数据中得到关于因果关系的任何结论,更无法得到关于反事实的结论。 那是我们教小孩的方式,比如在手腕上拍一下,并大声说:“你不应该弄撒牛奶,”或“你应该去做作业。”“你应该做……”意味着什么呢?这意味着回到过去,再次经历一番并修改控制你的行为的软件吗?这是我们与小孩的沟通方式。如果我们失去了这种方式,我们也就失去了形成社交能力的机制。这是最近让我兴奋的话题。 如何创造出人类智慧 关于控制论,你知道我是一个物理学家。我研究存储设备,因为我对控制论感兴趣,又开始研究决策理论。我们都确信我们某天将创造出人类智慧。问题是怎样创造。我认为决策理论是一种方式。所以我研读了Howard Raiffa(最近刚去世)的论文,Savage的贝叶斯统计,还有Ron Howard,Kahneman和Tversky的关于心理启发的文章。这是在70年代末。 Tversky和Kahneman当时是大人物,他们提出的启发式我认为应该模仿,不能被埋没了。对AI来说,我认为这样的启发式算法在解决问题中可以扮演重要的角色。回想起来,我写的第一本书就是关于启发式算法的,我还用下象棋的机器作为决策理论中很多观点的隐喻。 Tversky和Kahneman当时在研究概率和决策偏差。例如,母亲的眼睛是蓝色的条件下,女儿的眼睛也是蓝色的概率大——还是反过来,女儿有蓝眼睛的条件下,母亲也是蓝眼睛的概率大?多数人会说前者概率大——因为他们更喜欢考虑因果。但事实证明,两种情况概率是相同的,因为每代人中眼睛人数保持稳定。我用这个例子作为证据,说明人们更喜欢因果思考,而不考虑概率——他们偏向于容易获得的因果解释,即使概率论会指出不同。 我们的判断常常存在许多偏见,这是因为我们倾向于依赖因果关系。我们将世界看作是因果关系的集合,而不是统计关系或相关关系的集合。大多数时候我们可以绕行得到正确的判断,因为这些关系紧密相关。但有时会导致失误。蓝眼睛的故事就是一个这种失误的例子。 “相关并不意味着因果”这句话导致了许多悖论。例如,小孩的拇指的大小与他们的阅读能力高度相关。所以,如果你想长高,就要学会更好地阅读。这种矛盾的例子证明,相关并不等于因果关系。但是,人们由于渴望因果解释而常常落入这种陷阱。我们的大脑是一个因果处理器,而不是关联处理器。问题在于怎样调和两者之间的关系。我们怎样在大脑中组织因果关系?怎样操作和更新这种心理呈现?这引出了许多问题,哲学家,心理学家,计算机科学家和统计学家都还没法解决的问题。现在我们有了这些模式,所以很多人感到兴奋,要做的工作也很多。 希望开发拥有自由意志的机器人 (责任编辑:本港台直播) |