刚才我已经谈了量子反常霍尔效应。是全新的效应,是不需要外加磁场的量子霍尔效应,所以它提供了一个不需要外加磁场的欧姆电阻等于零的信息高速公路。我们平常的电子器件如晶体管如果变的非常小,那里的电子像我们在交通拥挤路口的汽车一样,而处在量子反常霍尔效应的电子像高速公路的汽车一样。它们按照自己的轨道勇往直前,绝对不走回头路。所以,为未来信息技术发展,量子反常霍尔效应提供了全新的原理,使我们可以做出低能耗的量子器件,还可以用它和超导一起做量子计算。 超导现象也是非常奇特的量子现象,1911年由一个荷兰科学家发现,两年以后,他因这个重大发现获得了诺贝尔物理奖。大家知道,对大部分材料来讲,如果降温的时候,它的电阻会一直的下降。对绝大部分材料,即使降到绝对零度还剩有一点电阻。另一种材料,当降到某个特定的温度——转变温度,电阻会变成零,所以这是超级导电,欧姆定律也不适用了,而且它有完全的抗磁性。如果我们用这么一个超导体做一个圆环,通上电,一直使它处于超导,这个电流会永远永远地流下去。因为电阻等于零,按照欧姆定律,刚才我们提到发热的问题就解决了。电阻等于零,它产生的热量也等于零,所以这是非常重要的现象。如果我们在室温下实现了,这意味着我们电子器件一旦供上电就永远不用管它。室温下的超导将和电的发明一样重要。大家可以想像,导线没有电阻了,所有的电子器件,所有的输电线路,都会大大的降低能耗。因为这种现象非常的神奇,光超导这个领域就五次拿到诺贝尔奖,1913年、1972年、1973年、1987年,2003年。超导研究总体的路子,不说大家也知道,就是怎么提高材料达到超导状态的温度。大部分材料达到超导要温度非常低,一般是液氦温度以下。液氦温度大概是4K,如果材料工作在液氦温度要花非常大的能量。第二个非常重要的温度就是77K,这是非常重要的温度点。为什么,77K就是咱们的液氮温度。如果你找到77K就可以实现超导状态的材料的话,你把你的材料泡到液氮了,可以实现我们刚才说的综合的应用。液氮很便宜,每升4块钱,就是两瓶矿泉水,你少喝点矿泉水,这就有这样经济价值了。但是,若大部分应用要用液氦,液氦每升100块钱,一般仪器每天要用10升,那就需要1000块钱,所以你的仪器每天要喝一瓶茅台,你用不起。提高超导转变的温度,是超导专家梦寐以求、一直追求的目标。结果,这个事件发生在1986年,瑞士的科学家发现超过77K温度的高温超导现象,1986年发现,1987年拿诺贝尔奖。我讲拓扑相变是1983年就提出了这个理论,过了二十几年到今年才拿诺贝尔奖。他们是1986年发现,第二年就拿奖。因为在液氮里,做出的新一代电子器件可以工作。它的机理在哪里?科学的机理在哪里?三十年过去了,一塌糊涂。今年1月份有一个美国科学家评述这方面的理论,他说了一句话。他说至少有14个诺贝尔奖,包括成千上万的物理学家都在这个领域工作,都提出了理论、模型和想法,大部分都非常有意思,但是互相矛盾,他把他们俩发现的铜氧化物超导机制的解决称之为物理的巨人之战。到现在还没解决。
我在2008年的时候,忽然有一天,我有一个想法,能不能用中国鱼与熊掌兼得的策略解释77K这个温度下的超导现象?但是我不确定,因为我对高温超导了解不多。我,2008年6月6日,请我两个好朋友,北大的谢心澄老师和当时在香港大学的张富春老师来京,j2直播,他们两个都是超导专家,张富春是在高温超导发现以后水平最高的科学家之一,我说,我这个理论,你们告诉我值不值得做,对还是不对。开了半天的会,因为都是好朋友,我猜测他们可能知道我不对,但是没好意思说。晚上吃饭的时候,他们说了这样一句话:想法可能很好,但是你还是用实验证据证明最好,没有这个可能很难办。结果我们又花了四年,2012年在《中国物理快报》做出了鱼与熊掌的东西,单层原子厚的铁硒,长在这个材料上。可以看到,中间这张照片告诉我们材料质量非常高,而且有一个非常大的超导能隙,期盼以久让我有不眠之夜的现象,看到了我想要的现象。后来跟我的学生北京大学王健,上海交大贾金锋,清华大学王亚愚,复旦大学封东来,斯坦福大学Moller,中科院物理所周兴江、丁洪、赵继民,斯坦福大学沈志勋,东北大学高桥隆等等实验都表明,这是在1986年77K以上的铜酸盐氧化物后第一个高温超导物质,虽然还需要进一步证实。一个美国科学家说我们确实开创了一个新的前沿,new frontier for superconductivity。 (责任编辑:本港台直播) |