撰文 潘颖 赛先生讯美国当地时间10月11日,美国物理学会宣布,将2017年Oliver E. Buckley奖颁发给美国麻省理工学院的文小刚教授和加州理工学院的Alexei Kitaev教授。Buckley奖是凝聚态物理领域的最高奖。 根据美国物理学会介绍,开奖,这次获奖的工作是“拓扑序理论和它在众多物理系统中的应用”。(For the theory of topological order and its consequences in a broad range of physical systems.)1989年,文小刚首次引入了“拓扑序”概念,并数十年来一直发展拓扑序理论。1997年Kitaev把拓扑序应用于量子计算,引入了拓扑量子计算的概念,提出利用物质的二维拓扑态实现可靠的量子存储和信息处理及在适当配置的一维系统中可靠地存储量子信息。 Oliver E. Buckley凝聚态物理奖旨在表彰和鼓励在凝聚态物理领域中在理论或实验上做出杰出贡献的物理学家,奖金为两万美元。美国贝尔实验室于1952年为纪念该实验室极有影响力的主席Oliver E. Buckley而设立该奖,授予推进和深入理解凝聚态物理知识的最重要贡献。通常该奖授予一人,但也可以因共同成就由若干人分享。 我们热烈祝贺本刊主编文小刚教授和Alexei Kitaev教授共获殊荣。在这值得庆贺的时刻,我们在第一时间采访了文教授,请他向读者介绍他的相关工作、学术生涯和研究心得。
文小刚 赛先生:首先祝贺您获得Buckley奖!很多人都听说过“拓扑绝缘体”,但对“拓扑序”的了解并不多,您能讲讲这二者的区别吗? 文小刚:“拓扑序”是我早在1989年研究自旋液体时引入的概念。2006年,Kane和Mele发表了一篇题为“Z2拓扑序和量子自旋霍尔效应”(Z2 Topological Order and the Quantum Spin Hall Effect)的文章。这是拓扑绝缘体的开始。但这篇文章的题目造成了一些概念上的混乱。 首先,这篇文章不是讲量子自旋霍尔效应有多重要,而是讲量子自旋霍尔效应不重要。文章的结论是,即使没有量子自旋霍尔效应,我们也会有非平凡的绝缘体。这一结果非常让人吃惊。这个绝缘体后来被别人叫做“拓扑绝缘体”。这是一篇很重要的文章,它开启了拓扑绝缘体这一非常活跃的领域。但文章题目里的"拓扑序"则是误导。“拓扑序”这个概念已经在1989年被清楚地定义了。根据那个定义,拓扑绝缘体没有拓扑序。其实拓扑绝缘体是一种对称保护物质态(这是我和顾正澄在2009年引入的一个概念),而拓扑序则完全不需要对称性保护。 此外,拓扑序和拓扑绝缘体的物理特性也有很大的不同。拓扑序有分数电荷和分数统计的元激发,有演生的规范场。有的拓扑序有破坏不了的零电阻导电表面。这些现象在拓扑绝缘体中都不出现。其实拓扑绝缘体到底有什么物理特性,不是一个简单的问题。很多文章(如维基百科)中讲的拓扑绝缘体的物理特性常常是不正确的。比如有人说拓扑绝缘体的特征是有导电的表面,其实平凡的绝缘体也可以有导电的表面,而拓扑绝缘体的表面有时也可以不导电。其实拓扑绝缘体真正的物理特征是知道的。只不过很多科普文章老是讲那些不是特征的特征。 赛先生:您的学习和研究生涯是怎么样的,是在什么背景下提出拓扑序理论的?据说当年考取CUSPEA后,您本来是冲凝聚态领域的“大牛”安德森(Philip W. Anderson)而去的,后来却改拜风格完全不同的威腾(Edward Witten)为导师,进入了高能物理领域,但最终又转回凝聚态,这中间都发生了什么? 文小刚:我本科在中国科技大学学习低温凝聚态物理。1982年通过李政道先生主持的CUSPEA考试(编者注:中美联合培养物理类研究生计划,China-U.S. Physics Examination and Application,是1979年-1989年间中国用来选拔派遣学生到美国攻读物理专业研究生的考试。),获得了到普林斯顿大学读研究生的机会。本来我想跟安德森教授继续做凝聚态物理,但当时他只有一半时间在普林斯顿,而且手下已经有八个学生,忙不过来。这时我又发现普林斯顿的高能物理实力极强。犹豫了很长时间后,我有幸跟Witten教授作超弦方面的研究。那段时期,我不仅学习了近代高能物理中路径积分、量子场论、规范场论、重整化群等基本知识,又接触了大量的数学,包括微分形式、纤维丛、代数拓扑、同调上同调和共形场论等等。那期间,发表了超弦中的磁单极和非微扰效应等几篇文章。 (责任编辑:本港台直播) |