但相比于像水或磁铁这样均质材料——或甚至是培养皿中的同类细胞——癌细胞要复杂得多。生长在不同患者、不同器官内的癌细胞差异非常大。即便是同一颗肿瘤,也可能包含各种不同形状、大小和蛋白结构的癌细胞。 癌细胞的复杂性令人如此头大,以至于生物学家们对于提出一个一般性的理论框架保持谨慎的态度。但是这并不会令物理学家们心灰意冷。 “生物学的训练更看重复杂性和差异性,”物理学家克拉斯坦·布拉格夫(Krastan Blagoev)表示。他领导着一项由国家科学基金会(National Science Foundation)资助的研究生命系统中的理论物理的项目。“物理学家则善于发现共同点,并从这些共同点中提取共性的行为”。 很多物理发现都使用了这种思路。现在已供职于宾夕法尼亚大学的物理学家安德烈·刘(Andrea Liu)和芝加哥大学的悉尼·纳格尔(Sidney Nagel)曾于1998年将阻塞(jamming)过程发表在了自然杂志上。 他们描述了熟悉的例子:堵塞的交通、一堆沙子、以及卡在杂货店漏斗里的咖啡豆,这些单独的颗粒都因外力的作用而凝聚成固态。刘和纳格尔提出,阻塞状态可能是一种之前未被物理学家认可的物相。
而如今,经过十多年的争论,这一概念已被广泛接受。虽然这并不是文献中第一次提到阻塞态,但却是刘和纳格尔让这种被弗莱德伯格称作“泛滥(deluge)”的概念风靡物理学界。(这篇文章已被引用了超过1,400次。) 弗莱德伯格意识到,自己毕生研究的肺组织里的细胞,与咖啡豆和沙子的密集堆叠方式很类似。在2009年,他和他的同事发表了关于阻塞态的第一篇论文。他们提出,阻塞(jamming)可以固定住组织里的细胞,而解除阻塞(unjamming)的相变则会释放部分细胞。这一过程可能对哮喘或其他一些疾病存在影响。 弗莱德伯格表示,包括这篇论文在内,力学之于细胞行为研究的重要性正被越来越多地认可。 “人们总是以为力学结构是细胞转移因果关系的最下游端,而最上游端是遗传和表观遗传因素”,他说。“然后人们发现,物理力和力学行为事实上也可以成为遗传行为的上游——细胞对其所处的微观力学环境非常敏感。” 雪城大学的物理学家丽莎·曼宁(Lisa Manning)在读了弗莱德伯格的论文后,决定把他的想法付诸行动。她和同事使用了一种二维模型来模拟细胞迁移:细胞填满所有空间,细胞间沿边线和顶点相连。 这个模型提出了一个新的变量——一个衡量材料内部有序性的指数——他们管它叫做“形状指数(shape index)”。 可以这么来解释,直播,如果细胞堆叠紧实,他们就会被“阻塞”在固定的位置,就像汽车和咖啡豆一样。 所以,我们可以使用一种对细胞形状进行定量的“形状指数(Shape index)”可用来描述“阻塞态”与“解除阻塞态”之间的转换。比如,球形的、对称的细胞有着较低的形状系数,细胞位置相对固定;长圆形、不规则的细胞有较大的形状系数,细胞可以自由移动。
图左:阻塞态;图右:解除阻塞态 如上图,弗莱德伯格发现,当形状指数大于3.81时,肺细胞就开始移动,可以从彼此中间挤过去。曼宁的预测“纯粹来源于理论与想法”,但这确实是一项令人震惊的对物理理论的验证。 美国国家癌症研究所(National Cancer Institute)肿瘤物理学(Physical Sciences in Oncology)项目的一位官员在了解了相关研究结果之后,鼓励弗莱德伯格用癌症细胞进行类似验证。 该项目为他提供了资金,以研究乳腺癌细胞中的阻塞态特征。 与此同时,德国莱比锡大学的物理学家约瑟夫·卡斯(Josef Käs)在考虑,阻塞理论能否被用于解释癌细胞令人费解的行为。通过他自己和其他人的研究,他知道,总体上很僵硬的乳腺癌和宫颈癌肿瘤里也含有可以流入周围环境的柔软的、可移动的细胞。 如果正是解除阻塞的相变使得这些细胞流态化,卡斯马上意识到:或许,基于测量肿瘤细胞阻塞状态的活检,可以比已使用近百年的视觉检测更有效地判断癌细胞是否即将发生转移。 (责任编辑:本港台直播) |