数据分析师要在所在行业(例如电商、O2O、社交、媒体、SaaS、互金等等)展示她/他的专业度,熟悉自己行业的业务流程和数据背后的意义,避免上面的数据笑话。 3. 想象力 商业环境的变化越来越快、越来越复杂,一组商业数据的背后涉及到的影响因素是常人难以想象的。数据分析师应该在工作经验的基础上发挥想象力,大胆创新和假设。 根据硅谷公司的核心 KPI(Facebook 的 4-2-2 准则,LinkedIn 的 connection 规律),我们也想找到互联网企业驱动增长最核心的 KPI。基于我们的想象力和「无埋点」全量数据采集的优势,我们创造了」GrowingIO 留存魔法师」。通过全量采集的数据,智能自动的后端计算,以及简单的使用交互,留存魔法师可以帮助企业迅速找到与其留存最相关的用户行为,就像魔法师轻轻挥动魔法棒一样简单。例如某 SaaS 产品,在一周内创建过 3 个图表的用户(群)留存率非常高,那么「一周+3 个+图表」就是我们驱动用户增长的魔法数字。 4. 信任度 以销售岗位为例,一个销售人员首先要和用户建立起信任;如果用户不信任你的话,那他也很难信任或者购买你的产品。同理,数据分析师要和各部门同事建立良好的人际关系,形成一定的信任。各个部门的同事信任你了,他们才可能更容易接受你的分析结论和建议;否则事倍功半。 四、数据分析常见的七种思路 1. 简单趋势 通过实时访问趋势了解产品使用情况,便于产品迅速迭代。访问用户量、访问来源、访问用户行为三大指标对于趋势分析具有重要意义。
分钟级的实时走势分析
以星期为周期的趋势对比 2. 多维分解 数据分析师可以根据分析需要,从多维度对指标进行分解。例如浏览器类型、操作系统类型、访问来源、广告来源、地区、网站/手机应用、设备品牌、app 版本等等维度。
多维度分析访问用户的属性 3. 转化漏斗 按照已知的转化路径,借助漏斗模型分析总体和每一步的转化情况。常见的转化情境有注册转化分析、购买转化分析等。
漏斗分析展示注册每一步的流失率 4. 用户分群 在精细化分析中,常常需要对有某个特定行为的用户群组进行分析和比对;数据分析师需要将多维度和多指标作为分群条件,有针对性地优化产品,提升用户体验。 5. 细查路径 数据分析师可以观察用户的行为轨迹,探索用户与产品的交互过程;进而从中发现问题、激发灵感亦或验证假设。
通过细查路径分析用户的行为规律 6. 留存分析 留存分析是探索用户行为与回访之间的关联。一般我们讲的留存率,是指「新增用户」在一段时间内「回访网站/app」的比例。数据分析师通过分析不同用户群组的留存差异、使用过不同功能用户的留存差异来找到产品的增长点。
留存分析发现「创建图表」的用户留存度更高 A/B 测试就是同时进行多个方案并行测试,但是每个方案仅有一个变量不同;然后以某种规则(例如用户体验、数据指标等)优胜略汰选择最优的方案。数据分析师需要在这个过程中选择合理的分组样本、监测数据指标、事后数据分析和不同方案评估。 五、数据分析实战案例 某社交平台推出付费高级功能,并且以 EDM(Email Direct Marketing,电子邮件营销)的形式向目标用户推送,用户可以直接点击邮件中的链接完成注册。该渠道的注册转化率一直在 10%-20% 之间;但是 8 月下旬开始注册转化率急剧下降,甚至不到 5%。
如果你是该公司的数据分析师,你会如何分析这个问题呢?换言之,哪些因素可能造成 EDM 转化率骤降? 一个优秀的数据分析师应该具有全局观和专业度,从业务实际出发,综合各个方面的可能性。因此,EDM 注册转化率骤降的可能性罗列如下: 1. 技术原因:ETL 延迟或者故障,造成前端注册数据缺失,注册转化率急剧下降; (责任编辑:本港台直播) |