首先,人脑不仅仅是个对电信号进行处理的神经网络。比如说神经递质在神经元之间担当了“信使”的作用,而其中的活动是化学过程。甚至人脑中的生物过程和物理过程都可能对思维产生影响,比如脑供血不足和剧烈运动后的眩晕现象。 即使在理论上说人脑中的上述过程也都能模拟,这事也还没有完。近年来认知科学越来越强调躯体在思维中的作用(所谓“embodied cognition”,即“具身认知”),就是说大脑之外的躯体部分(如外周神经系统、感觉器官、运动器官等等)也在思维活动中扮演着不可或缺的角色。比如说,很多抽象概念的意义都是基于躯体活动的(如“接受”批评、“推动”发展、“提高”觉悟等),那么要完整理解这些概念,一个系统大概也需要真能“接”、“推”、“提”才行。 “模拟派”的追随者可能会说人体也是可以用软硬件模拟的。这“在原则上”自然是正确的,但如果神经网络之外的部分对实现智能是必须的,那么单靠人工神经网络来完整再现智能大概就是不可能的了。为实现“像人一样的智能”,我们需要的不再是“人工神经网络”,而是包括这样一个网络的“人造人”。 就算一个“人造人”被制成了,它大概也不会是所有人心目中的“人工智能”。对那些以“图灵测试”为智能标准的人而言,“智能”意味着在外部行为上和人不可区分。大部分人都同意完全靠预先设计所有可能的答案来通过这个测试是不大现实的,而通过“学习”才有希望。但这就意味着只有类人的躯体还不够,系统还需要类人的经验。这就不再仅仅是个技术问题了。因为我们的经验中的很大一部分是社会经验,只有当人造人完全被当作人来对待时,它才能得到人类经验,进而获得人类行为。而这将会在伦理、法律、政治、社会等领域造成大量问题。 “忠实复制”不是好主意 上面讨论的是用人工神经网络实现像人一样的通用智能的可能性,其结论是:远没有看上去那么有希望,尽管不是完全不可能。但这条路线比可能性更大的问题是其合理性和必要性。 人工智能的基本理论预设是把人类智能看作“智能”的一种形式,而试图在计算机中实现其另一种形式。根据这个看法,“人工智能”和“人类智能”不是在细节上完全一样,而是在某个抽象描述中体现着同一个“智能”。如果智能所需的某个机制在计算机里有更好的实现方式,那我们没必要用人脑的办法。这方面的一个例子就是四则运算。 当我们为一个对象或过程建立模型时,我们总是希望这个模型越简单越好。只有当我们可以在忽略了大量细节的情况下仍然可以准确地刻画一个过程,我们才算是真正理解了它。因此,如果最后发现我们只有在严格复制人脑、人体及人类经验的情况下才能再现智能,那么人工智能应当算是失败了,而非成功了,因为这说明智能只有一种存在方式,而“智能”和“人类智能”其实是一回事。 出于这种考虑,很多人工智能研究者有意识地和人脑的细节保持距离。在从人脑的工作方式中得到灵感的同时,他们会考虑在计算机里是否有更简单的办法来实现同样的功能。计算机毕竟不是个生物体,所以没必要模仿人脑的那些纯生物特征。同理,对深度神经网络的研究者来说,他们的网络在某些方面不像人脑,这不是个问题,只要这种差别不带来功能缺失就行。 这个问题是所有走“仿生”路线的技术都要面对的,包括近来大热的“类脑智能”、“类脑计算”等。在有关讨论中,一些人只是强调“像人脑那样”的可能的好处,但完全不提这种模仿的限度。只有当我们能清楚地说明哪些东西不用模仿时,我们才算真正说清了哪些东西需要模仿。只是说“人脑是这样的”尚不能成为“计算机也必须这样”的充分理由。 这里一个常被提到的例子就是飞机和鸟的关系。飞机的初始设计的确借鉴了鸟类,但显然不是越像鸟越好。这里自然有可能性的考虑,但更重要的是要飞机完全像鸟既不合理也无必要。我们当前的课题也同样。严格说来,“人工神经网络”、“人工大脑”、“人造人”和“人工智能”各是不同的研究目标,atv,各有各的价值和意义。尽管它们之间有联系,仍然不能混为一谈,因为设计目标和最佳实现方法均不同。 如何“取长补短” (责任编辑:本港台直播) |