本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

j2开奖直播:在人工智能爆发前,带你走近它的背后推手

时间:2016-09-06 20:53来源:本港台直播 作者:本港台直播 点击:
请想象以下场景——某种人工智能助手成为了像数字支付、地图那样的基础服务。它跨越平台。无论是PC和手机,又或

在人工智能爆发前,带你走近它的背后推手

请想象以下场景——

某种人工智能助手成为了像数字支付、地图那样的基础服务。

它跨越平台。无论是PC和手机,又或是智能家电与无人汽车,它都隐身于幕后,随时准备着响应主人的“召唤”。

它跨越应用。用户无论是拍照片、玩游戏,又或是到语言不通的异国旅行、开始一轮新的健身训练,都少不了它的陪伴。

它还是跨越场景的,感官健全的。能听又能说、能看又能写,也就是说,它会极大地增强主人的能力,帮助人类更好地应对工作与生活场景中的各种挑战。

人工智能技术:爆炸倒计时?

尽管目前行业里还没有一款人工智能产品能达到这样的水平——既能对接企业的产品数据库,又能基于长期的用户数据积累,达成对主人客观情况的某种程度的了解——但我们距离类似的目标已越来越近。

预计几年之内,通过嵌入各类硬件、软件与服务中,开奖,人工智能可以收集到更多实时生成的用户数据,atv直播,类似于体重、体脂、体温、心率、血氧饱和度等生理健康指标和健身项目、时长等运动指标等自身数据,以及用户饮食禁忌、消费习惯、品牌偏好等外部数据,再加上时刻灌入更新的实时企业商品及服务信息,就可以为用户提供最贴身、最吻合其需要的生活提示与消费推荐。当然,所有的用户数据都会加密存储于云端,不会有泄密的问题。

很多人认为,经过多年的积累,人工智能技术已处于爆炸式增长的前夕——也许他们的判断没错,但作为信息科技领域的从业者,我和同行们更关心的是,人工智能何以突然间从“冷宫”穿越到“朝堂”上,成为了万众瞩目的焦点?谁在为人工智能赋能?

三大动力

尽管人们很早以前就开始对有自主思维与行动能力的机器展开畅想,并在60年前(达特茅斯会议)便确立了“人工智能”(Artificial Intelligence)的概念,但经历了几十年漫长岁月的探索、挫折、重振,直到最近这几年,学术界、产业界似乎才看到将人工智能由构想转换为现实的曙光。

深度学习算法、高质量大数据与高性能计算资源,这是令人工智能技术研发骤然加速的三大动力,推动着人工智能从实验室走向人们工作与生活,也推动着相关技术孵化和裂变出越来越多的精彩应用。

首先,深度学习算法其实就是推理算法与机器学习算法的结合。典型的深度学习模型往往需要架设出层次很深的神经网络,通过强化模型的复杂度来提升机器的学习能力,而模型复杂度又需要增加模型宽度(即隐性神经元数目)与增加模型深度(即隐层数目)。

其次,研究者还必须不断提高数据规模与质量,来增强机器的学习效果。以过去几个月来名声大噪的AlphaGo为例,这个围棋程序借助对人类六至九段棋手的16000次对局分析获得了3000万个布点数据,并将这些数据用来训练其“策略网络”(Policy Network)。

其三,高性能计算资源亦不可或缺。Elo评分法(Elo Rating)是由美籍匈牙利裔物理学博士阿帕德·埃罗(Arpad Elo)创建的对决类比赛选手水平评分方法。根据Elo评分,AlphaGo采用不同硬件配置、运行于异步模式(Asynchronous)与分布模式(Distributed)时对应的得分如图1:

在人工智能爆发前,带你走近它的背后推手

图1:AlphaGo的Elo评分,引自谷歌Deep 

很显然,分布模式下,从1202个CPU、176个GPU到1920个CPU、280个GPU,计算性能的线性增长只带来了28点的评分增长,这表明,计算资源呈线性增长,评分却不可能同样呈线性增长。越往后,每一点评分的增长都需要海量计算资源的支持。

从长远来看,我不觉得同为人类的棋手能够在与机器的搏杀中重占上风——无论棋类游戏的空间与规则是多么复杂,对机器而言,只要证明了某种算法行之有效,那么,在与日俱增的大数据资源、与时俱进的计算资源的加持下,其相对于人类而言的优势只会越来越大。

大数据:岂止于大

一个有趣的问题是,有关人工神经网络与深度学习的理论探讨和实践尝试已有几十年历史,然而为什么直到今天,深度学习才显现出非凡的威力?

美国联合服务协会(USAA)数据科学部部长罗伯特·韦尔伯恩(Robert Welborn)认为,2015年是机器学习商业化进程快速发展的一年。存储市场的大范围降价及存储设备制造成本的降低是机器学习领域腾飞的关键。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容