本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

【组图】【译】机器学习的十三套框架

时间:2016-02-19 02:57来源:本港台现场报码 作者:j2开奖直播 点击:
【组图】【译】机器学习的十三套框架,机器视觉算法工程师,机器学习应用,机器学习十大算法pdf

  过去几年以来,机器学习已经开始以前所未有的方式步入主流层面。这种趋势并非单纯由低成本云环境乃至极为强大的GPU硬件所推动; 除此之外,面向机器学习的可用框架也迎来了爆发式增长。此类框架全部为开源成果,但更重要的是它们在设计方面将最为复杂的部分从机器学习中抽象了出来,从而保证相关技术方案能够为更多开发人员服务。

  

【组图】【译】机器学习的十三套框架

  在今天的文章中,我们将共同了解十三款机器学习框架,一部分去年刚刚发布、另一部分则在不久前进行了全部升级。而这些框架中最值得关注的特性,在于它们正致力于通过简单而新颖的方式应对与机器学习相关的种种挑战。

  

  Apache Spark MLlib

  

【组图】【译】机器学习的十三套框架

  Apache Spark可能算得上当前Hadoop家族当中最为耀眼的成员,但这套内存内数据处理框架在诞生之初实际与Hadoop并无关系,且凭借着自身出色的特性在Hadoop生态系统之外闯出一片天地。Spark目前已经成为一款即时可用的机器学习工具,这主要归功于其能够以高速将算法库应用至内存内数据当中。

  Spark仍处于不断发展当中,而Spark当中的可用算法亦在持续增加及改进。去年的1.5版本添加了众多新算法,对现有算法做出改进,同时进一步通过持续流程恢复了MLlib中的Spark ML任务。

  

  Apache Singa

  这套“深层学习”框架能够支持多种高强度机器学习功能,具体包括自然语言处理与图像识别。Singa最近被纳入Apache孵化器项目,这套开源框架致力于降低大规模数据的深层学习模型训练难度。

  

【组图】【译】机器学习的十三套框架

  Singa提供一套简单的编程模式,用于跨越一整套设备集群进行深层学习网络训练,同时支持多种常规训练任务类型; 卷积神经网络、受限玻尔兹曼机与复发性神经网络。各模型能够进行同步(一一)或者异步(并行)训练,具体取决于实际问题的具体需求。Singa还利用Apache Zookeeper对集群设置进行了简化。

  

  Caffe

  

【组图】【译】机器学习的十三套框架

  深层学习框架Caffe是一套“立足于表达、速度与模块化”的解决方案。其最初诞生于2013年,主要用于机器视觉项目。Caffe自出现之后就一直将多种其它应用囊括入自身,包括语音与多媒体。

  由于优先考量速度需求,因此Caffe全部利用C++编写而成,同时支持CUDA加速机制。不过它也能够根据需要在CPU与GPU处理流程间往来切换。其发行版中包含一系列免费与开源参考模型,主要面向各类常规典型任务; 目前Caffe用户社区亦在积极开发其它模型。

  

  微软Azure ML Studio

  

【组图】【译】机器学习的十三套框架

  根据机器学习任务的实际数据规模与计算性能需求,云往往能够成为机器学习应用的一大理想运行环境。微软公司已经立足于Azure发布了其按需计费机器学习服务,即Azure ML Studio,其能够提供按月、按小时以及免费等分层版本。(微软公司的HowOldRobot项目亦利用这套系统创建而成。)

  Azure ML Studio允许用户创建并训练模型,而后将其转化为能够由其它服务消费的API。每个用户账户能够为模型数据提供最高10 GB存储容量,不过大家也可以将自己的Azure存储资源连接至服务当中以承载规模更大的模型。目前可用算法已经相当可观,其分别由微软自身以及其它第三方所提供。大家甚至不需要账户即可体验这项服务; 用户可以匿名登录并最多使用八小时Azure ML Studio。

  

  Amazon Machine Learning

  

【组图】【译】机器学习的十三套框架

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容