来莎莎 自发布AI First战略后,谷歌在人工智能道路上越走越坚定。不仅有Google Assistant智能助手,还在秋季发布会上发布了包括手机、耳机和智能音箱等多款AI硬件,构建AI生态。在特斯拉CEO马斯克等不断发出AI威胁论下,谷歌则表示,专注AI的前沿研究和解决实际问题。 近几年,Google每年都会举行APAC(亚太区年度媒体会议)。作为从Mobile First战略转移到AI First的科技巨头,此次媒体会议的焦点自然是人工智能,“Made with AI”。 11月28日的会议上,谷歌大脑(Google Brain)负责人Jeff Dean表示,谷歌在人工智能领域最终目标是三点:利用人工智能和机器学习让谷歌的产品更加实用(Making products more useful);帮助企业和外部开发者利用人工智能和机器学习进行创新(Helping others innovate);为研究人员提供更好的工具,以解决人类面临的重大挑战。 AI+软件+硬件 目前,机器学习在谷歌的大部分产品中都有应用。如Google Photos云端相片集,利用图像识别技术,可以提供人脸检测和照片自动分类;Google Lens基于图像识别和OCR技术,atv,能实时识别用智能手机拍摄的物品并提供与之相关的内容;Google Maps可以通过街道、街景的数据获取更多有关地区详细的情况,还可以了解停车难易程度;Gmail 和 Inbox 在收到邮件后,智能系统会给用户提供回复建议(Smart Reply);YouTube 中的自动字幕(Auto captions)则是通过机器学习给超过10亿的视频自动加上字幕;Google Translator利用神经网络机器翻译(Neural Machine Translation)。 Google Assistant是2016年5月19日推出的一款语音助手,核心是语音识别。Google Assistant 工程总监Pravir Gupta表示,该产品基于 Google 在机器学习、自然语言处理和搜索领域的经验之上。 在这些产品中,谷歌翻译或许是中国用户能够使用最多的。Jeff指出,过去的翻译系统使用更简单的统计翻译模型,由 50 万行代码组成。2016年,神经网络机器翻译系统(GNMT:Google Neural Machine Translation)正式应用到谷歌翻译中。Jeff称,该系统仅由 500 行 TensorFlow 代码组成。使用新的系统后,翻译准确性得到了很大改进,“堪比过去十年取得的成果”。Jeff提到,目前翻译效果提升最明显的是日英互译。 不过,谷歌不是最早在翻译中运用神经网络机器翻译系统的企业。2016年的百度机器翻译技术开放日上,百度技术委员会联席主席、自然语言处理部技术负责人吴华博士表示,百度早在一年多前(2015年)就率先发布了世界上首个神经网络的机器翻译系统(NMT),克服了传统方法将句子分割为不同片段进行翻译的缺点,充分利用上下文信息,对句子进行整体的编码和解码,从而产生更为流畅的译文。 吴华当时称,谷歌翻译强在基于统计的机器翻译上,但是在基于神经网络的机器翻译上,百度要领先。此外,谷歌翻译以英语为中心,百度翻译以中文为中心。 构建生态很重要的一点便是要让其中各成分有机融合。谷歌也正在努力让硬件、软件以及 AI 相互结合。今年秋季发布会上,谷歌发布了九款硬件产品,包括智能音响Google Home Mini / Google Home Max,笔记本Pixelbook,智能手机Pixel 2和Pixel 2 XL,Google Pixel Buds耳机,这些新硬件都与AI有关,整合了谷歌的智能语音助理 Google Assistant,凸显了谷歌在AI领域从软件到向硬件领域的野心。 其中,Google Home还具有语音配对功能(Voice Match),通过机器学习能识别不同的语音,可使最多六个用户连接到同一台 Google Home。Google Home Max 还运用了AI 技术 Smart Sound,可依据所处位置自动调整声音品质。谷歌首款无线蓝牙耳机Pixel Buds还可便捷地接入Google翻译,运用语音识别和翻译技术,进行实时翻译。 与华为、iPhone X 智能手机采用双摄像头不同,谷歌的Pixel 2/2 XL结合了机器学习和计算摄影技术来分析图像,将主体与背景分离。虽然只使用一枚摄像头,也具备人像模式功能,在拍摄人像时可柔和虚化背景。通常,这需要多镜头的专业相机。 除了内部产品使用AI,谷歌也为企业及开发者提供三种创新工具:TensorFlow,云机器学习 API (Cloud Machine Learning APIs) 以及张量处理器 (Tensor Processing Unit, TPU) 电脑芯片. Google 在 2015年发布了人工智能系统TensorFlow并宣布开源,之后TensorFlow成为了开源社区GitHub上最受欢迎的机器学习工具。除了TensorFlow,其他的深度学习工具还有Caffe, CNTK,Theano等。而在中国,2016年9月,百度也宣布其深度学习开源平台PaddlePaddle在Github及百度大脑平台开放。 面对这些竞争,Jeff在媒体交流会上回应称,每个平台都有各自优点和缺点,针对不同的人群,这样的竞争是好的。“Tensorflow开源软件基于Apache 2.0许可证,无论是大企业还是初创企业,每个人都可以利用它做自己想做的事情。这可能是Tensorflow成功的原因之一。我们看到一个很健康的生态系统,我们也从其他的开源平台当中学到了很多,不断改善Tensorflow平台,让这个平台更好。” 专注现实和研究问题 (责任编辑:本港台直播) |