全球机器智能峰会(2017/0528/237065.html">GMIS 2017),是全球人工智能产业信息服务平台机器之心举办的首届大会,邀请了来自美国、欧洲、加拿大及国内的众多顶级专家参会演讲。本次大会共计 47 位嘉宾、5 个 Session、32 场演讲、4 场圆桌论坛、1 场人机大战,兼顾学界与产业、科技巨头与创业公司,以专业化、全球化的视角为人工智能从业者和爱好者奉上一场机器智能盛宴。 5 月 27 日,机器之心主办的为期两天的全球机器智能峰会(GMIS 2017)在北京 898 创新空间顺利开幕。中国科学院自动化研究所复杂系统管理与控制国家重点实验室主任王飞跃为本次大会做了开幕式致辞,他表示:「未来,人工智能将帮助人类战胜各种困难」。大会第一天重要嘉宾「LSTM 之父」Jürgen Schmidhuber、Citadel 首席人工智能官邓力、腾讯 AI Lab 副主任俞栋、英特尔 AIPG 数据科学部主任 Yinyin Liu、GE Transportation Digital Solutions CTO Wesly Mukai 等知名人工智能专家参与峰会,并在主题演讲、圆桌论坛等互动形式下,从科学家、企业家、技术专家的视角,解读人工智能的未来发展。
上午,Citadel 首席人工智能官邓力发表了主题为《无监督学习的最新进展》的演讲,他探讨分享了无监督学习的优势,并详细介绍了随机原始-对偶梯度方法(SPDG)与其优良的性能,下面我们将一起浏览邓力老师的盛宴。 首先邓力老师介绍了无监督学习的概念和强大之处,邓力表明无监督的学习范式即是深度学习当中的一种范式。也就是我们不给系统提供一个非常具体的信号,你只是告诉它一些信息,让它以无监督的方式自己学习,能够很成功地学到你让它学的东西。
邓力今天跟大家介绍的一个无监督学习主流的观点就是,以预测为中心的无监督的学习的范式,在这个范式里面我们能够直接完成机器学习的目标,无论是预测还是其他的任务。因为,我们能够直接把输入放到系统里面,然后利用无监督学习的机制(机器自己学习),而不需要人类给它一些标签、标识,利用这种范式就能做出一些非常优良的预测。 随后邓力为我们描绘了监督学习如何使用分类器处理标注问题。我们知道监督学习的特点就是有大量的标注数据集,而最新的监督模型总是表现得比无监督预训练模型更好。那是因为,监督会允许模型能够更好的编码数据集上的特征。只不过当模型应用在其他的数据集上时,监督的效果会衰减。 如下图所示,邓力首先展示的就是从成对输入-输出数据(监督学习)的分类模型。
邓力老师表明监督学习,即给机器输入、输出一对数据,让它自己去学习,这种情况下它肯定有一个映射了,一对输入输出就像一个老师,老师教给这个机器如何进行识别或预测。这个范式非常地成功,在人类已经将其应用到语言识别和机器翻译等方面,最近由卷积神经网络引起的高效图像识别也是基于监督学习。这种范式十分成功,其算法都是用这种一对对映射的输入输出方式来训练整个系统。 但是另一方面我们可以看到这种方法的成本十分巨大,我们需要给系统提供输入和输出成对的数据。语音识别还好一点,但是对于其他的应用(比如翻译、医疗应用、图像识别、视频相关的任务和医学影像方面的任务),那么这种监督学习的训练方法就太贵了,成本太高了。
在介绍了监督学习的解决方案后,邓力老师紧接着带我们概览了一遍传统的无监督学习算法。首先就是聚类这一大类,其又包含以下几种方法: K-均值聚类:该方法是一种通用目的的算法,聚类的度量基于样本点之间的几何距离(即在坐标平面中的距离)。集群是围绕在聚类中心的族群,而集群呈现出类球状并具有相似的大小。K-均值聚类是最流行的聚类算法,因为该算法足够快速、简单,并且如果你的预处理数据和特征工程十分有效,那么该聚类算法将拥有令人惊叹的灵活性。 层次聚类:层次聚类最开始由一个数据点作为一个集群,随后对于每个集群,基于相同的标准进行合并,重复这一过程直到只留下一个集群,因此就得到了集群的层次结构。次聚类最主要的优点是集群不再需要假设为类球形,另外其也可以扩展到大数据集。 其次主要介绍了密度估计类的模型,其中包括: (责任编辑:本港台直播) |