本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

wzatv:科学家正让AI自己做实验,想要机器摆脱人类的直

时间:2017-07-09 05:06来源:本港台现场报码 作者:开奖直播现场 点击:
李杉 编译自 Science 量子位 报道 | 公众号 QbitAI 如果说这是未来的生物实验室,它似乎与现在的实验室没有多大差别。 里面有身穿白大褂的科学家,还有许多放着冷冻试管的盒子。架子

李杉 编译自 Science

量子位 报道 | 公众号 QbitAI

wzatv:科学家正让AI自己做实验,想要机器摆脱人类的直

如果说这是未来的生物实验室,它似乎与现在的实验室没有多大差别。

里面有身穿白大褂的科学家,还有许多放着冷冻试管的盒子。架子上的化学品——有一瓶瓶的纯酒精、一罐罐的糖、蛋白质和盐——都是培养微生物和操纵它们基因的标准配置。

在听到机器人的声音前,你甚至不会注意到它们的存在:它们就像蟋蟀一样,用低沉的声音为彼此歌唱。

这些机器人都为Zymergen效力,这是一家生物技术公司,2014年搬进位于旧金山湾东岸的这个电子工厂旧址。他们在这里开展微生物实验,寻找各种方式来提高有用化学物的产量。里面有一台机器人名叫Echo(不是亚马逊那个Echo)。在一堆笨重的设备里面,有一个机械手臂抓取了一个塑料孔板,上面放着几百个盛着液体的孔。

一束激光扫描了孔板侧面的条形,然后由Echo将其放到托盘上。之后的流程十分精细,用肉眼根本无法看清。

wzatv:科学家正让AI自己做实验,想要机器摆脱人类的直

“这并不是复制了我手动移液的过程。”该公司联合创始人兼运营和工程副总裁Jed Dean说,他是一位分子生物学家。“而是一种截然不同的方法。”不必使用移液管吸取液体,然后把液体逐一注入每个容量只有细胞那么大的孔里面,机器人整个过程都没有触碰它。相反,它使用了每秒500次的声波脉冲让液体自己震动,形成比手动操作小100倍的液滴。

这些都算不上多么具有未来感。大型生物学实验室多年以前就开始使用机器人和条形。即便那种名为“声学微滴喷出”的移液技术也已经存在了数十年。

但是,当我向Dean询问这个机器人正在从事什么项目的时候,才真正了解其中的玄机。“我不知道。”他说。他可以轻易得出答案,但这个实验并不是他设计的,而是由电脑程序自动生成的。

“我再说明一下,”Zymergen CEO Joshua Hoffman准备消除我们之间的误解,“这一过程中有人类科学家的参与,他们负责查看结果,并进行事实核查。”但之所以用程序来解读数据、生成假设和规划实验,最终目的还是“摆脱人类的直觉”。

与Zymergen秉承相同目标的公司还有好几家:他们都在利用人工智能技术增强甚至取代人类在科学流程中的作用。

wzatv:科学家正让AI自己做实验,想要机器摆脱人类的直

他们将其称作“人工智能支持的生物科技”,但Zymergen的联合创始人却不太喜欢这种说法,“‘人工智能’听起来像是机器人在下象棋。”该公司CTO Aron Kimball说,“我更喜欢‘机器学习’。”霍夫曼说,他所说的机器学习是计算机科学的一个分支,最近的人工智能技术进步几乎都来自这一领域。“这样更能说明我们在干什么。”

Zymergen的工作其实是调整工业微生物,j2直播,从而为生物燃料、塑料或药品制作原料。为了增加产量,很多企业都把繁重的工作交给Zymergen来完成。该公司的机器人之后会探索和修补每个微生物的基因,希望能够设计一个更好版本,提升其化合物的效率。

霍夫曼表示,问题在于,送到Zymergen的微生物已经“高度优化”。经过多年的研究和培育,这些细胞已经非常擅长它们所从事的工作。所以,想要进一步提升效率,就需要更加深入的探索基因,开展实验,然后使用所能获得的各种数据——换句话说,就是搞科研。

Zymergen试图加快这一过程。Hoffman表示,“一个人整天忙个不停也只能测试为数不多的假设,大约每月10个。”机器人则能加快这一过程——Zymergen的机器每周可以做1000次试验。但机器人只能遵照命令执行:如何向它们下达正确的指令才是真正的瓶颈。

当我问他们,这种算法是如何设计实验的时候,Kimball举了个简单的例子。“你拿到的原始微生物大约有5000个基因。假设有10种方式可以改变一个既有基因,那就要做5万次试验。”这些实验首先要制作1000个菌株,每一个都要有专门的突变。“每一个放在一滴里面。你可以向其中添加糖,培育一会儿,然后看看能得到多少产品。”可能有25个菌株可以多生产一些目标化学物。这些菌株可以用于培育下一轮实验使用的菌株,其余的放到冰箱里面。

但要发现过程绝非一帆风顺。Kimball表示,光是找到合适的突变就需要经过漫长的过程。如果只是一门心思想要实现最高效率,几乎不可能到达巅峰。原因在于,如果你只是将所有能够实现轻微提升的突变合并到单一的微生物里,未必能够实现重大改进。相反,由此生成的菌株会“生病”,效果远不及最初的菌株。所以,选择合适的路径(包括绕道达成目标)需要绘制一份心理地图,j2直播,同时展示所有菌株的所有效果——这份地图不只是3个维度,而是数千个维度。这就需要机器学习来指引方向。

但其中还是有一个关键差异:当机器人终于发现能够提高化学品产出的基因变化后,他们不会了解这些效果背后的生物化学原理。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容