归因是精细化运营必不可少的利器。归因的目的,终究是为了提升运营转化与收入增长。 App研发好了,广告做了,渠道选了,预算也到位了(虽然总是觉得不够吧),广告投放出去效果却不够好,这时我们会反推,产品是不是设计有问题?文案不够勾引?推广渠道选错了?……当然以上都对。但是却没人能回答:我的50%广告花费到底浪费在哪? 广告投放是直面用户的最后一环,也是最重要一环,如果你没法去追溯(归因)出投放的效果(此处说的不是一般意义上渠道给你看的那些华丽但掺假的数据),那么你真的很难做好下一步的优化。前面所做的全部努力很可能慢慢损耗在最终推广投放环节。 现在谁还在做粗放式效果评估,就太被动了 互联网线上广告比之传统广告来说,其数据被记录下来,可以用于数据分析,优化投放效果。线上媒体渠道仗着这些优势打着精准投放的概念一路收割广告主的预算。 数据总是会让人产生莫名的迷恋,我们带着固有的认知与局限,看到数据是美好的,然而结果却差强人意,尤其现在渠道转化越来越差,用户增长越来越难,广告投放出去,运营同学也花了很多精力做效果评估,然并卵,这种粗放式的评估方法根本不能解决更实质的问题: 我们知道用户点了这家渠道的广告,但是点了后安装没安装? 这次的下载量到底是哪家渠道带来的?下次又该买哪家? 除了用户引流之外,这个后期转化应该算谁的?怎么算更科学更合理? 互联网营销与传统营销最大的差别是:可定向、可追溯传统广告的特点是覆盖广泛、粗略区分目标人群、不能追踪效果。而互联网广告则可定向投放,也可追踪效果,二者同样重要。相信广告主们多注重研究定向,却很少关注归因吧。大数据技术带来的定向投放确实很有吸引力,比如搜索“旅游”,平台会给不同的人展示不同的产品与广告,定向对广告主而言看起来很划算,但是人总是有局限的,不结合归因,你怎么知道粗放定向还是更精细的定向哪个效果更好? 大部分广告主在投放App时都会采用多渠道组合推广的方式,比如一个海外App投放,会采用Facebook、Google、苹果竞价广告或其他媒体渠道等多种渠道组合的广告购买行为。 对于广告主而言,需要明确广告投放出去用户是从哪个渠道来的,这个用户质量怎么样,广告购买和用户获取以及用户在App内行为之间的关系是什么,这些需要一套方法或体系来验证,这就是归因。 在实际应用中,归因操作更复杂,比如说,某用户看了信息流广告、点击了社交广告、然后在搜索引擎广告中完成下载行为,那么这个转化应该怎么算?某用户通过某社交客户端下载App之后没有其他App内部转化行为,这个渠道又怎么判断?再比如电商类用户看了电商广告产生了内部转化行为,那他更进一步的复购、活跃到什么样的程度?这些都可以通过归因把整个环节串联起来,做到更综合科学的判定与回溯,以此进行投放与运营各层面的有效优化。 换句话说,通过一个平台的归因服务,可以明确出广告投放效果数据。比如告诉广告主,Google渠道带来的App用户,内部付费率是多少,付费单价是多少,你可以根据这个数据做一个判断,就知道下次应该怎样投放。如果说Google的量很好,可以加大投放预算。此外,如果某一个渠道带来的新增量级很大,但内部转化行为非常差,后续就可以降低这部分推广预算,甚至说直接把该渠道pass。可追溯就提供了科学优化的强大依据。 归因也讲方法论,多触点归因才是科学的归因分析法 严格意义上讲,归因模型大约有10种左右,而归因分类则大体分为单触点和多触点两类。为了方便理解,溪姐给大家介绍四种常见的归因模型。 最终互动模型:100%分配给转化前用户最后一次接触的媒体,这样也容易测量,但属于单触点模式,不完善,适合转化型广告主。 首次互动模型:100%分配给第一次接触的渠道,只考虑最初的品牌认知、不考虑转化,适合全新品牌。 时间衰减互动模型:配比按时间递减,适合临时促销广告。 自定义互动模型:自定义个阶段配比,适合销售和品牌同样重视的广告。 (责任编辑:本港台直播) |