为什么会有这种区别呢?原因是「识别」。这件事情是哺乳动物的智能,不仅仅限于人类。你家的小猫小狗会识别出你跟别人不一样。深度学习可以在这种自然能力的处理上有很不错的表现。但是语言和文字这种符号思考能力是近几千年历史上发展出来的,跟传统的信号处理能力非常不一样。所以,现在的算法是有局限性的,我们在构建人工智能系统的时候要理解它的局限性。 3 关注路径,而非直奔目标 移动时代互联网产品经理培养的直觉是:刚需、极致。但是在人工智能领域,这样直奔主题的直觉未必能成功。人工智能产品由于其复杂性,其设计核心是其中间路径而非最终目标。 我们移动互联网时代在制定项目的时候,常会先有一个明确的目标。但是怎么完成一个项目不是由目标所决定的,是路径决定的。 一群老鼠开会要做风控,猫来抓老鼠之前做一个预警。怎么做呢?大家定了一个明确的目标,在猫脖子上系铃铛。问题是,哪只老鼠来做这件事呢?怎么做呢?这就是路径,路径有很多层含义。
别人的目标不是你应该效仿的终点,直播,别人的路径更不是你要效仿的路径。BAT 的终点不是你的终点。你最终学习到的都是一些切片,无论是他的终点、还是所谓的路径,其实都是他 90% 预想的路径被否定之后的一些切片。 探索新生事物的过程中,「被否定的痛苦」,才是真正的核心竞争力。痛苦是不可复制的,哪怕是我们在学习别人总结经验、路径形成的方法论。方法论的复制,也是建立在海量的痛苦当中。我们都知道找到实现目标的路径很关键,但是没有人会告诉你路径在哪里,只有靠自己去摸索。即使是「元方法论」(Meta 方法论),也只能帮助我们在海量的不确定因素中,去找到几个确定的点,减少死亡的概率。 4 AI 产品路径设计方法论 1、成本问题。我们在设计人工智能产品的时候,会有种种不靠谱的因素在制约产品。我们只有快速的迭代,Lean startup(精益创业) 降低成本,才能提高我们的成活率。尽管互联网产品和 AI 产品不一样,但是快速迭代是一个通用的方法论。 2、不确定性拆分。把大的不确定性切成小的,切成小的不确定性。这个方法可以帮助我们在人工智障中寻找到人工智能。 3、必须有业务基础系统。像我这种技术出身的人,都会有一个做伟大的人工智能系统的梦想。但实际上数据库系统跟智能系统有什么区别?其实者两者在角色上是非常接近的,他们都是一种支持系统,支持系统是没办法离开基础业务去独立工作的。 4、中间节点是在考验所有人的耐心。由于人工智能系统不靠谱、周期长,所以一个人工智能系统从投入到产出中间要有很长的周期,内部、外部、包括投资人在内的参与方的耐心很容易耗尽。怎么在耗尽之前达到中间节点?这里面最大的风险,并不是来自于技术,而是怎么做好中期管理。 做人工智能的产品,不要直奔主题而去。做金融,就不要直接去做投资研究系统。做医疗,不要直接做诊断系统。做招聘,不要直接做人才匹配系统。直奔主题的失败不是特例,很多大公司都是上来就做一个特别大的系统, 90% 都会失败。 5 AI 产品特性:可演进性 人工智能系统是非常复杂的系统。但是复杂在英文中有两种表达方式,Complex 和 Complicated,这两种是不一样的。移动互联网产品是一个 Complex 的系统,而人工智能应用,可以类比生物,是由千亿个小元件精细配合完成的,是 Complicated 系统。Complex 的系统强调的是Scalability,规模能力,扩张能力。而人工智能产品需要的是 Evolvability 可演进性。类比而言,一百亿个草履虫组合在一起不能合成一个人,但人工智能系统也是需要从细胞开始进化的。
人工智能系统的设计方法论要根根据这个区别去做改进。盖尔定律说,一个复杂系统是没法自顶之下进行设计的;如果一个复杂系统从一开始的设计不是切实可行的,那么到后面的修修补补也是无法让它切实可行的;复杂系统必须从一个切实可行的简单系统重新开始做。 从顶向下去设计的复杂系统无一例外都会是失败的。一个切实可行的复杂系统势必是从很多个切实可行的简单系统发展而来的。那么, AI 公司可以交付什么?我们有四种选择——零件、工具、解决方案、系统。我们在实际解决问题的时候,我们很难交付一个复杂的系统。优秀的 AI 创业者不约而同地选择一种路径,为了设计实现一个通用系统,不得不先做包工头,做了一个一个的解决方案,从解决方案里面总结一个系统出来。 (责任编辑:本港台直播) |