本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

码报:浅谈三维几何的处理与分析(上)(2)

时间:2017-06-07 05:27来源:报码现场 作者:www.wzatv.cc 点击:
我们对无噪声三维曲面做一个合理的假设:曲面局部光滑并且任意一点的法方向可以由其局部邻域的法方向构成的函数刻画。进一步假设局部邻域的法方向

我们对无噪声三维曲面做一个合理的假设:曲面局部光滑并且任意一点的法方向可以由其局部邻域的法方向构成的函数刻画。进一步假设局部邻域的法方向可以构造一个特征描述子 并且存在一个函数使得 。如果该特征描述子对噪声不敏感,那么在该曲面相对应的噪声曲面上,可以寻找类似的函数并使得来近似真实的法方向(是噪声曲面上对应的区域)。

描述子。注意到双边法向滤波算子具有一定的抗噪性,我们提出整合不同参数下的双边法向滤波算子来构造上述的特征描述子,并称之为“法方向描述子”(FND)。FND在不同噪声下具有很好的抗噪性,并且可以用来区分不同的几何特征。下图是我们用FND来聚类噪声曲面的面片(每一类用不同颜色绘制)。可以看到,具有不同几何特征的噪声区域被明显地区分开来,在不同噪声下(高斯噪声、均匀噪声)划分也具有比较一致的相似性。

  

码报:浅谈三维几何的处理与分析(上)

级联回归网络。 在给定无噪声曲面和其对应的含噪声曲面数据下,我们通过构造一个简单的神经网络来寻找。该神经网络是一个单隐层的RBF网络,其输入是噪声数据的法方向,损失函数由和其对应的真实法方向的差异构造。为了进一步减少回归误差,我们针对由FND分类的区域分别寻找各自的。回归出来的法方向结果,用来指导噪声曲面顶点位置的更新,从而达到减少噪声的效果。注意到单隐层网络的拟合能力有限,我们利用级联的方式将当前去噪后曲面的法方向作为输入,训练新的网络降低逼近误差。我们发现,级联若干个单隐层网络可以极大程度地减少噪声并不失计算的便捷性。在实际中,三次级联就可以带来非常优秀的去噪结果。训练出来的网络在实际运用时也不再有调参之苦。

>>>>

去噪实战

我们的算法在人工合成的噪声数据和真实扫描数据上都表现卓越。比起现有的去噪算法以及它们最佳的参数搭配,在质量和速度上都有很大程度的提高。下图中展示的是我们使用的真实三维物体(树脂石膏材料)。我们用高精度的三维扫描仪获取这些雕像的真实几何模型并当作无噪声数据(groundtruth)。

  

码报:浅谈三维几何的处理与分析(上)

我们准备了三种噪声数据:1.利用 Kinect 一代的单帧深度数据构成的三角网格;2. 利用Kinect 二代的单帧深度数据构成的三角网格;3. 利用Kinect Fusion 技术重构的三角网格。前面提到,噪声跟数据、设备都相关,因此对于这三个来源不同的数据,我们分别训练不同的级联回归网络用来去噪。以下各图展示了典型的噪声数据和它们对应的无噪声数据。

  

码报:浅谈三维几何的处理与分析(上)

我们的算法可以很好地针对以上数据去噪。以下各图展示了我们的算法在这三类数据的测试集上的表现。左右两端分别是噪声数据和真实数据。可以看到与其他算法(双边法向滤波bilateral normal、引导法向滤波 guided normal、光顺等)相比,我们算法的输出更忠实于真实结果:噪声引起的曲面波动明显减少,开奖,曲面也无过分光滑和过强的剧烈变化。图下方数值表示的网格法方向与真实值的平均误差也进一步说明了我们数据驱动下的算法优越性。

  

码报:浅谈三维几何的处理与分析(上)

Kinect V1 数据上的去噪比较结果

  

码报:浅谈三维几何的处理与分析(上)

KinectV2 数据上的去噪比较结果

  

码报:浅谈三维几何的处理与分析(上)

KinectFusion 数据上的去噪比较结果

>>>>

小结

从数据中学习噪声与三维数据之间的复杂关系是我们去噪方法的核心思想。从这项工作中我们也认识到:忽略真实数据去研发一个放之四海而皆准的去噪算法是不可行的。既然噪声来自数据,我们就应该从数据中探究其中的奥秘。我们的工作也体现了数据的威力。感兴趣的读者不妨参考我们发表在Siggraph Asia 2016的文章[1]并试试附带的Matlab代

值得一提的是,我们的算法假设了物体某点噪声只和该点附近区域的数据相关。这个局部相关的假设并不总是成立。比如Kinect二代这样飞时测距的设备,光线由于物体几何形状不同可以产生多次反射,从而造成全局位置偏差。我们的算法并不能很好地去除这样的偏差。是否可以从数据中挖掘其中的规律,还是一个值得探讨的问题,欢迎大家在文章下方留言与我们交流探讨。

附录:

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容