原因是「识别」这件事情是哺乳动物的智能,不仅仅限于人类。你家的小猫小狗会识别出你跟别人不一样。深度学习可以在这种自然能力的处理上有很不错的表现。但是语言和文字这种符号思考能力是近几千年历史上发展出来的,跟传统的信号处理能力非常不一样。 所以,现在的算法是有局限性的,我们在构建人工智能系统的时候要理解它的局限性。 关注路径,而非直奔目标 移动时代互联网产品经理培养的直觉是:刚需、极致。但是在人工智能领域,这样直奔主题的直觉未必能成功。人工智能产品由于其复杂性,其设计核心是其中间路径而非最终目标。 我们移动互联网时代在制定项目的时候,常会先有一个明确的目标。但是怎么完成一个项目不是由目标所决定的,是路径决定的。 一群老鼠开会要做风控,猫来抓老鼠之前做一个预警。怎么做呢?大家定了一个明确的目标,在猫脖子上系铃铛。问题是,哪只老鼠来做这件事呢?怎么做呢? 这就是路径。 路径有很多层含义。
别人的目标不是你应该效仿的终点,别人的路径更不是你要效仿的路径。BAT 的终点不是你的终点。我刚开始创业的时候,特别喜欢看别的架构师的那些架构,认真地做笔记,但当我开始认真搭建自己项目的架构时,我还是不知道这个逻辑是什么,为什么这么搭。因为整个项目的演进过程中,最重要的事情不是最终公布出来的那些,而是没有被公布出来的。你最终学习到的都是一些切片,无论是他的终点、还是所谓的路径,其实都是他 90% 预想的路径被否定之后的一些切片。 探索新生事物的过程中,「被否定的痛苦」,才是真正的核心竞争力。 痛苦是不可复制的,哪怕是我们在学习别人总结经验、路径形成的方法论。方法论的复制,也是建立在海量的痛苦当中。我们都知道找到实现目标的路径很关键,但是没有人会告诉你路径在哪里,只有靠自己去摸索。即使是「元方法论」(Meta 方法论),也只能帮助我们在海量的不确定因素中,去找到几个确定的点,减少死亡的概率。 AI 产品路径设计方法论1. 成本问题 我们在设计人工智能产品的时候,会有种种不靠谱的因素在制约产品。我们只有快速的迭代,Lean startup(精益创业) 降低成本,才能提高我们的成活率。尽管互联网产品和 AI 产品不一样,但是快速迭代是一个通用的方法论。 2. 不确定性拆分 把大的不确定性切成小的,切成小的不确定性。这个方法可以帮助我们在人工智障中寻找到人工智能。 3. 必须有业务基础系统 像我这种技术出身的人,都会有一个做伟大的人工智能系统的梦想。但实际上数据库系统跟智能系统有什么区别?其实者两者在角色上是非常接近的,他们都是一种支持系统,支持系统是没办法离开基础业务去独立工作的。 如果说真正好的产品是一块蛋糕,那里面的精华一定是基础业务系统;人工智能系统可能连一个糖衣都算不上,它可能是蛋糕顶上的那个小樱桃。2016 年某银行花了一年的时间来做出一个大数据系统,系统有丰富AI模块但内部业务部门都不愿意用。这里面只有报表系统,把 Excel 的 Copy、Paste 功能做进去了,真正打中了刚需,然后业务部门才逐渐接受了智能的附加功能。 4. 中间节点是在考验所有人的耐心 由于人工智能系统不靠谱、周期长,所以一个人工智能系统从投入到产出中间要有很长的周期,直播,内部、外部、包括投资人在内的参与方的耐心很容易耗尽。怎么在耗尽之前达到中间节点?这里面最大的风险,并不是来自于技术,而是怎么做好中期管理。 做人工智能的产品,不要直奔主题而去。做金融,就不要直接去做投资研究系统。做医疗,不要直接做诊断系统。做招聘,不要直接做人才匹配系统。直奔主题的失败不是特例,很多大公司都是上来就做一个特别大的系统, 90% 都会失败。 AI 产品特性:可演进性 (责任编辑:本港台直播) |