本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

码报:【j2开奖】讲堂| 曾文军:当机器学习遇到大视频数据

时间:2017-04-01 07:56来源:本港台现场报码 作者:本港台直播 点击:
你离成为人工智能专家,还有多远的距离? 近日,四位来自微软亚洲研究院的AI大咖在中国科技大学进行了一场以“开启智能计算的研究之门”为主题的前沿分享。这四位嘉宾分别是

  

码报:【j2开奖】讲堂| 曾文军:当机器学习遇到大视频数据

你离成为人工智能专家,还有多远的距离?

近日,四位来自微软亚洲研究院的AI大咖在中国科技大学进行了一场以“开启智能计算的研究之门”为主题的前沿分享。这四位嘉宾分别是:

  首席研究员刘铁岩——人工智能的挑战与机遇

  资深研究员谢幸——用户画像、性格分析与聊天机器

  首席研究员童欣——数据驱动方法在图形学中的应用

  首席研究员曾文军——当机器学习遇到视频数据

目前,我们已经发布了刘铁岩博士的演讲——,谢幸博士的演讲——,和童欣博士的演讲——

最后一位与大家分享的是曾文军博士的演讲——当机器学习遇到视频数据,全文如下(文字内容略有精简)。希望这些关于前沿技术的思索能够开启属于你的智能计算研究之门!

今天很高兴有这个机会给大家分享一下微软亚洲研究院近两年在机器学习和视频大数据的分析和理解方面的一些工作以及一些思考。

AI兴起是由于有大数据等各方面的因素。大数据有各种不同的形态,其中视频信号占很大比重,现在的网络上,百分之七八十的流量是由视频信号所组成的,可以说它是大数据中的大数据

这种大数据给我们带来了挑战,同时也提供了很大的机会。从机会角度来说,这些数据可能在几年前还不太容易得到,但现在我们能够分析这个大数据,提取有价值的信息,从而去支持新的产品或者服务,所以这里面蕴藏了巨大的机会。在有大数据的同时,我们的计算资源也在迅速发展,机器学习和深度学习在这几年也取得了非常快速的进步。现在是IT行业非常兴旺的时代。

关于视觉信号分析,可以发现它的发展也是起起伏伏,到一定阶段都会看到一些瓶颈。其中一个很大的瓶颈就是没有足够量的数据,所以模型或算法上的发展都受到了一定的限制。

2010年左右,李飞飞教授和她的同事以及学生构建了ImageNet Database,这是一个有标注的数据集,应该是目前为止最大的有标注的图像数据集。它按照WordNet的层级去组织,比如从哺乳动物到狗,再到一个明确的狗的品种。因为它有概念,同时每个概念里面也有几百到上千的图像可以跟它associat在一块,所以是一个很好的图像信号的表示,也是一个很好的知识库。这个数据库辅助了图像分析、计算机视觉等相关领域近期的快速发展。

除了ImageNet,近几年也有一些与图像识别相关的比赛,其中图像分类就是希望在100多万的标注图像上,去进行分类。当然,还有一些如物体检测、场景检测、场景分析和语义分割等。

关于ImageNet图像分类比赛,2012年前,错误的概率很大,所以基本上很难适用。2012年,Hinton的实验室第一次把深度神经网络用到这个任务上,一下有了很大的突破,也引起了很大的关注。随后这几年技术就一直有持续的发展,并且神经网络结构上的变化促使了比较大的进步。

短短几年内图像识别这个任务已经做的很不错了。当然还有一些更有挑战性的任务,像语义分割等等。虽然图像上已经有了很大的进步,但视频方面却还是差的很远

视频信号相比于图像信号有更大的挑战,因为它是一个更高维的信号,里面的内容多样性也非常大。所以要去判断它、理解它都很困难,当然数据量很大也是另外一个问题。

还有一个问题,在很多情况下,视频是实时的,比如监控,因此在处理速度等各方面都有很大的要求。而且标注视频数据时每一帧都要标注,也很耗费时间、精力和成本。这也是为什么视频发展相比图像来讲还是落后一些。

缺少训练数据又是另外一个问题,如监控录像的数据很难获得。要解决这个问题,不能像其他视频一样可以从视频网站上找到很多数据做训练,所以发展也受到了阻碍,会稍微慢一点。

接下来,介绍一下微软亚洲研究院在视频分析方面做的一些工作。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容