实际上,在进入80年代后,《感知机》一书提到的两大问题都已得到解决。一方面,摩尔定律的应验使计算机处理能力飞速提升,计算能力不再成为制约神经网络的因素。另一方面,反向传播算法的提出解决了关于“异或”电路实现的难题。随后的近30年中,随着软件算法和硬件性能不断优化,深度学习技术终于可以大展拳脚。近年来,移动互联网的快速发展、数据量的激增则给神经网络提供了充足的学习材料。 然而,明斯基仍不看好神经网络和深度学习技术。2007年,在新书《情感机器》出版的不久后,《Discover》杂志的苏珊·克鲁格林斯基(Susan Kruglinski)对明斯基进行了采访。后者再次重申了自己的观点: “人工智能领域的每个人都在追求某种逻辑推理系统、遗传计算系统、统计推理系统或神经网络,但无人取得重大突破,原因是它们过于简单。这些新理论充其量只能解决部分问题,而对其他问题无能为力。我们不得不承认,神经网络不能做逻辑推理。例如,在计算概率时,它无法理解数字的真正意义是什么。” 关于理想中的人工智能技术,他认为重要的一点是使其具备常识性知识,而不仅仅是对图像和语音的模式识别。在他看来,人工智能应当类似于人脑,而“人类解决问题的方式首先是具备大量常识性知识”。随后,他还希望能实现《情感机器》一书中描述的思维体系结构,使人工智能在各种思维方式间切换。 行业的发展并没有按照明斯基的设想去推进。现在基于深度学习对图像和语音的判断识别受到人们的热捧。业内普遍认为,深度学习技术帮助人工智能研究在视觉和语音领域取得了长足进步。在硅谷,越来越多科学家和工程师认为,深度学习将最终带来“强人工智能”:机器的智慧水平将超过人类。 2013年,明斯基的学生、知名未来学家雷伊·库兹韦尔(Ray Kurzweil)接替吴恩达,出任Google Brain项目负责人。在谷歌强大的神经网络的基础上,库兹韦尔的到来或许将可以帮助明斯基实现未尽的目标。 人工智能的未来或许可以用明斯基2014年的一段话来总结:“如果你让计算机自己待着,或是让许多计算机待在一起,那么它们可能会试图了解,它们从何而来,它们是谁。如果它们突然看到一本关于计算机科学的图书,那么可能会嘲笑着说:‘这太假了。’而不同的计算机群体可能也会有不同想法。” ,atv (责任编辑:本港台直播) |