John Searle 认为,尽管房里的人可以以假乱真,让房外的人以为他确确实实说汉语,他却压根不懂汉语。在上述过程中,房外人的角色相当于程序员,房中人相当于计算机,而手册则相当于计算机程序:每当房外人给出一个输入,房内的人便依照手册给出一个答复(输出)。而正如房中人不可能通过手册理解中文一样,计算机也不可能通过程序来获得理解力。既然计算机没有理解能力,所谓「计算机于是便有智能」便更无从谈起了。 展望下一步 OpenAI 希望该研究能让我们开发出这样的机器,它能够拥有与自己生活经验密切联系的语言。如果我们以这一实验为基础慢慢增加环境复杂性,扩大智能体被允许的活动范围,或许可以创造出一种表达性语言,其中会包含超越这里基础动词和名字的观念。 随着这种被发明出来的语言不断变得复杂,如何为人类解释这些语言就会变成一种挑战。这也是为什么下一个项目中,RyanLowe 和 Igor Mordatch 打算研究如何借由让智能体与说英语的智能体交流,这将让被发明的语言与英语连接起来。这将会自动将他们的语言翻译成我们听得懂的话。这也属于交叉学科的研究内容,跨域人工智能、语言学以及认知科学,也是他们即将与UC Berkeley 的研究人员合作研究的部分内容。 论文:Emergence of Grounded Compositional Language in Multi-Agent Populations 摘要: 通过在大型语料库中构建统计学模式,机器学习在包括机器翻译、问答系统(questionanswering)及情感分析(sentiment analysis)的自然语言处理方面已取得了巨大成功。然而,对于和人交互的智能体(agents)来说,仅仅构建统计学模式还远远不够。在本论文中,我们研究了基础合成语言(groundedcompositional language)能否以及如何在多智能体中作为完成目标的一个手段而出现。为此,我们提出了一种可以生成基础合成语言的多智能体学习环境和方法。这种语言表征为智能体随时间而做出的抽象离散符号流(abstractdiscrete symbols),但其还是具有定义词汇和句法的一致结构(coherent structure)。我们也发现,当语言通信不可用时,指向(pointing)和引领(guiding)等非言语(non-verbal)通信方式也就出现了。 论文地址:https://arxiv.org/pdf/1703.04908.pdf 论文:A Paradigm for Situated and Goal-Driven Language Learning
摘要: 在不同语境中灵活使用语言及与其他个体交流复杂思想是人类智能十分突出的属性。自然语言会话的研究应聚焦于设计可与上述语境整合并与人高效协作的通信智能体。 在该论文中,我们提出了一个通用性情境语言学习(general situated languagelearning)范式,其设计目的在于打造一个与人高效协作的鲁棒性语言智能体。该会话范式(dialogue paradigm)基于语言理解的实用性定义而构建。语言只是智能体在环境中完成目标的工具之一。只有当智能体运用语言高效完成目标,我们才说智能体「理解」了语言。在该定义下,智能体的通信成功(communicationsuccess)减少了其在环境中完成任务的成功。 这一设置通过和许多传统的自然语言任务对比,最大化了由静态数据集衍生的语言学目标。这样的应用经常因为将语言具化为自己的终止而犯错。这些任务优先独立度量语言智能(通常是语言能力的一种,按照乔姆斯基的说法(1965)),而不是在真实情景中度量模型的有效性。实用性定义(utilitariandefinition)由强化学习最近的成功而引发。在强化学习的设定中,智能体将真实世界的任务中的成功度量最大化,而无需语言行为(linguisticbehavior)的直接监督。 论文地址:https://arxiv.org/pdf/1610.03585.pdf 机器之心编译,转载请联系本公众号获得授权。 ?------------------------------------------------ 加入机器之心(全职记者/实习生):[email protected] 投稿或寻求报道:[email protected] 广告&商务合作:[email protected] (责任编辑:本港台直播) |