本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

码报:【组图】只需十四步:从零开始掌握Python机器学习(附资源)(4)

时间:2017-03-15 00:49来源:香港现场开奖 作者:www.wzatv.cc 点击:
如果你正在寻找学习机器学习基础的替代或补充性方法,恰好我可以把正在看的 Shai Ben-David 的视频讲座和 Shai Shalev-Shwartz 的教科书推荐给你: Shai Ben-Dav

如果你正在寻找学习机器学习基础的替代或补充性方法,恰好我可以把正在看的 Shai Ben-David 的视频讲座和 Shai Shalev-Shwartz 的教科书推荐给你:

Shai Ben-David 的机器学习介绍视频讲座,滑铁卢大学。地址:

理解机器学习:从理论到算法,作者 Shai Ben-David & Shai Shalev-Shwartz。地址:

记住,这些介绍性资料并不需要全部看完才能开始我写的系列文章。视频讲座、教科书及其他资源可在以下情况查阅:当使用机器学习算法实现模型时或者当合适的概念被实际应用在后续步骤之中时。具体情况自己判断。

第2步:更多的分类

我们从新材料开始,首先巩固一下我们的分类技术并引入一些额外的算法。虽然本篇文章的第一部分涵盖决策树、支持向量机、逻辑回归以及合成分类随机森林,我们还是会添加 k-最近邻、朴素贝叶斯分类器和多层感知器。

  

码报:【j2开奖】只需十四步:从零开始掌握Python机器学习(附资源)

Scikit-learn 分类器

k-最近邻(kNN)是一个简单分类器和懒惰学习者的示例,其中所有计算都发生在分类时间上(而不是提前在训练步骤期间发生)。kNN 是非参数的,通过比较数据实例和 k 最近实例来决定如何分类。

使用 Python 进行 k-最近邻分类。地址:

朴素贝叶斯是基于贝叶斯定理的分类器。它假定特征之间存在独立性,并且一个类中任何特定特征的存在与任何其它特征在同一类中的存在无关。

使用 Scikit-learn 进行文档分类,作者 Zac Stewart。地址:

多层感知器(MLP)是一个简单的前馈神经网络,由多层节点组成,其中每个层与随后的层完全连接。多层感知器在 Scikit-learn 版本 0.18 中作了介绍。

首先从 Scikit-learn 文档中阅读 MLP 分类器的概述,然后使用教程练习实现。

神经网络模型(监督式),Scikit-learn 文档。地址:

Python 和 Scikit-learn 的神经网络初学者指南 0.18!作者 Jose Portilla。地址:

第3步:更多聚类

我们现在接着讲聚类,一种无监督学习形式。上篇中,我们讨论了 k-means 算法; 我们在此介绍 DBSCAN 和期望最大化(EM)。

  

码报:【j2开奖】只需十四步:从零开始掌握Python机器学习(附资源)

  Scikit-learn聚类算法

首先,阅读这些介绍性文章; 第一个是 k 均值和 EM 聚类技术的快速比较,是对新聚类形式的一个很好的继续,第二个是对 Scikit-learn 中可用的聚类技术的概述:

聚类技术比较:简明技术概述,作者 Matthew Mayo。地址:

在玩具数据集中比较不同的聚类算法,Scikit-learn 文档。地址:

期望最大化(EM)是概率聚类算法,并因此涉及确定实例属于特定聚类的概率。EM 接近统计模型中参数的最大似然性或最大后验估计(Han、Kamber 和 Pei)。EM 过程从一组参数开始迭代直到相对于 k 聚类的聚类最大化。

首先阅读关于 EM 算法的教程。接下来,看看相关的 Scikit-learn 文档。最后,按照教程使用 Python 自己实现 EM 聚类。

期望最大化(EM)算法教程,作者 Elena Sharova。地址:

高斯混合模型,Scikit-learn 文档。地址:。

使用 Python 构建高斯混合模型的快速介绍,作者 Tiago Ramalho。地址:

如果高斯混合模型初看起来令人困惑,那么来自 Scikit-learn 文档的这一相关部分应该可以减轻任何多余的担心:

高斯混合对象实现期望最大化(EM)算法以拟合高斯模型混合。

基于密度且具有噪声的空间聚类应用(DBSCAN)通过将密集数据点分组在一起,并将低密度数据点指定为异常值来进行操作。

首先从 Scikit-learn 的文档中阅读并遵循 DBSCAN 的示例实现,然后按照简明的教程学习:

DBSCAN 聚类算法演示,Scikit-learn 文档。地址:

基于密度的聚类算法(DBSCAN)和实现。地址:

第4步:更多的集成方法

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容