“完全基于认知的过程去生成一个人工智能,技术上可行,产品上,这个方向就不太通了。因为这就好像是要求你去证明一个定理,你需要通过每一个步骤都可读的方式把定理证明出来”,他说,“我们的信仰是大数据,我们的信仰是拟合,我们信仰是AI与人类交互本身是一个黑盒子。” 他认为,如果探究图灵测试的本质,本身也是一个黑盒子,人们从来不关心你中间是如何实现的,以及这句话是由机器说出来,还是由人说出来的。他们关注的是,你是不是能够从结果上混淆它的认知过程。 为什么情感计算可行,是出于这个原因。如果跟其他人定义一样,认为首先要定义“常识”是什么,那么它也还是不可行的。 李笛说:“这就是今天要造出一个真正有情感的机器人面临的难题。但是,似乎也没有人能证明狗是有情感的,你无法用理论甚至解剖学来证明,但是我们能感受到,会觉得它听得懂我们,它会拿眼睛盯着你。从这个程度上看,狗至少可以拟合人类情感,这样才可以和人交流。这跟小冰是一样的。” 深度学习来做对话式AI ?产品方向错了 “用深度学习做这件事,如果你最后只是想做一个机器人,做一个Conversational AI 的话,我觉得技术会从中得到很多突破,但产品上是用错了方向。这不是用高射炮打蚊子,而是拿打飞机的高射炮去打坦克。 ” 说回图灵测试,李笛认为,图灵测试的本质的,是看机器人像不像人,而不是能不能正确回答问题。图灵测试的本质是测量计算机系统是否具有感性生物学特征,而不是测量它是不是一个专家系统。有的时候,EQ高的人反而有能力表现出来IQ低。所以,但凡去参加图灵测试的计算机系统,不管系统本身如何,至少造系统的人都不是很容易地成为图灵测试的Sample对象。但是这个区别是很大的。 李笛回忆说,刚开始做聊天机器人的时候,国内和国际都在谈深度问答,就是希望通过QA的方式,重新去解析Semantic web,这块是搜索引擎的重点,他们在这一块也非常努力,但是他们不想只提供临时链接,不想只出Search Result Page,而是想给用户明确的答案,但这是搜索引擎的历史使命,不是人工智能的事。 那么,对话式AI中究竟该采用什么技术? 李笛说:“如果你只是做某一个小领域的对话,我觉得Rule Base就够了,经济适用,但它不会有大的发展。有一些人用AI+HI,也就是让计算机有一个初步的筛选,有一个Pass机制,一个初步的Ranker,一个分类。然后后端用人工,用人的专家系统来反馈,在反馈的过程中,Ranker 计算机能够积累的知识体系的排序。但是,用深度学习做这件事,如果你最后只是想做一个机器人,做一个Conversational AI 的话,我觉得是用错了产品方向。这不是用高射炮打蚊子,而是拿打飞机的高射炮去打坦克。” 他认为,搜索引擎的 Efficiency 非常高,在可见的未来,人们要想获得深度知识,都是通过搜索引擎来更快获取。 在聊到这一话题时,他连续使用了几个反问句:“你问一个电商网站自己的人,它是用电商机器人去买东西还是直接在他们自己的 App 上点?你去问一个搜索引擎的人,要得到一个答案,它是会去找机器人问?还是踏踏实实地用搜索引擎?未来会有这么一天,但现在,这还是个伪需求。” 他对新智元表示,用深度学习来做对话式AI现在效果并不好,这不是技术不成熟,而是产品方向错了。 互联网公司做机器人实体:目前不是小冰的考虑范围 “所以你看今天很多实体机器人,商业化还需要很久,我们目前也没有想到很好的解决方案。” 李笛介绍,小冰应该是目前为止,唯一一个有大用户量的对话机器人。而小冰背后的情感计算框架包含了整个人工智能的各个部分。 但是,小冰不会考虑实体。 (责任编辑:本港台直播) |