这同样并不新鲜——苹果之前就吹嘘过自己在 iPhone 上执行过一些神经计算。但对 Facebook 来说,这项任务却难得多。因为它并不生产硬件。Candela 说他能执行这个小应用是多亏了该团队的工作积累的成果——一个项目会让另一个项目更简单,综合起来可以让未来的工程师无需接受太多培训就能开发出类似的产品——从而使得这样的东西可以被快速地开发出来。他说:「从开始开发这个到我们把这个成果投入公开测试,我们用去了八周时间,这是相当疯狂的。」
从左到右)AML 工程总监 Joaquin Candela;应用计算机视觉团队负责人 Manohar Paluri;技术产品经理 Rita Aquino;工程经理 Rajen Subba 他说,完成这样的任务的另一个秘密是协作(collaboration),这也是 Facebook 公司文化的砥柱。在这个案例中,atv,Facebook 内部团队间的轻松可接触性使得从数据中心的图像渲染可跳跃到手机端实现该工作,尤其是移动团队密切熟悉手机硬件。这种好处不只是让你能够把朋友或亲人的照片做成名画「The Scream」中的女性那种风格的电影。而是让 Facebook 的一切都变得更强大所迈出的一步。短期内,这使得从解析语言和理解文本中得到更快的回应成为了可能。长期而言,它能够使得实时分析听见的和看见的成为可能。他说,「我们说的是秒,或者更短的时间。它必须是实时的。我们是社交网络,如果我们要根据一点内容预测人们的反馈(feedback),我们的系统需要即时作出反应,对吧?」 Candela 看了一眼刚拍的、并转成了梵高绘画风格的自拍照,骄傲溢于言表。他说,「在手机上运行复杂的神经网络,也就是要把人工智能放到每个人的手中。这并非偶然所得,而是 Facebook 内部民主化人工智能的一部分。」 「这是一段漫长的旅程。」他补充说。 Candela 出生于西班牙,在他三岁时全家搬迁到了摩洛哥,于是他在那里上法语学校。虽然他的理科和文科成绩都很高,但他决定去马德里上大学,希望在那里学习他认为最难的课题:电信工程——这门不仅需要掌握如天线、放大器等实物的有关知识,也要读得懂数据的「极酷」课程。他被一位解构自适应系统的教授施了魔咒。 Candela 开发了一个使用智能过滤器来改善漫游手机信号的系统;他称其为「一个婴儿神经网络」。2000 年他在丹麦度过了一个学期,那段时间的研究使他对训练算法愈加迷恋,并没有仅仅停留在研究代码的层面。在那里他与 Carl Rasmussen 不期而遇——一位曾与传奇人物 Geoff Hinton(在机器学习领域有「cool kid」之称的机器学习教授)在多伦多共同研究。在临近毕业时,他本打算加入宝洁公司的一项管培计划,但当 Rasmussen 邀请他攻读博士学位时,他选择了机器学习。 2007 年,他来到英国剑桥的微软研究实验室工作。工作不久,他便得知一个公司内部的竞争:微软即将推出 Bing,但需要改进搜索广告的关键组件——准确地预测用户何时会点击广告。而公司决定开展内部竞争。公司会测试团队的解决方案,以确认是否值得采用,而获胜团队的成员将获得一次免费的夏威夷之旅。19 支队伍进行了比赛,而 Candela 的队伍取得了胜利。他获得了免费旅行的奖励,但他感觉自己受到了欺骗——他认为微软更大的奖赏在于他的成果能在通过测试后成功发布。 Candela 接下来的一系列行为显示了他的决心。为了让公司给他一个机会,他开始了「疯狂远征」。他进行了 50 多次内部会谈,并建立了一个模拟器来显示他的算法的优势;他跟踪了这个有权力做出这个决定的副总裁——在等自助餐的时候站在他旁边,故意和他一起上洗手间,然后在便池那里鼓吹自己的系统;他搬到了这位高管的办公室旁边一块未被使用的地方,然后毫无预警地出现在了这个人的办公室,争辩着「说到就要做到,我的算法更好」。 将自己定位于站在自助餐线的人的身旁并同步化他的浴室之旅,而后从邻近的小便池推荐他的系统;他躲进行政部门附近的闲置空间,并突然出现在行政部门的办公室,争辩着「说到就要做到,我的算法更好」。 2009 年,Candela 的算法与 Bing 一同发布。 2012 年初,Candela 拜访了在 Facebook 工作的朋友,周五在位于门洛帕克的园区待了一天。当他发现这家公司的职员不必申求成果的测试权,而是随时都可以测试时,他惊呆了。于是三天后,他去 Facebook 进行了面试,当周的周末便拿到了 offer。 (责任编辑:本港台直播) |