每到春运之时,人口的迁入和迁出就成了城市的主旋律。昨日,高德地图发布了2017年春运大数据。其中,广东省的5座城市在人口迁出比例排名中占据前5位,而安徽省的4座城市名列人口迁入比例排名前10位,成为返乡大省。 高德地图能够得到关于人口迁徙的大数据,是基于平时对用户数据的收集与累积。其实不止是高德地图,目前的电子地图全都离不开大数据的支撑,可以说没有大数据就没有电子地图。 电子地图的原理是什么?支撑电子地图的大数据究竟是如何得来的?采取怎样的方式才能收集到?这些问题都值得我们思索一番。 现在,人们在生活中越来越依赖电子地图,对其所提供的服务及性能的要求也愈发严苛。好在科技处于不断发展的过程中,不少电子地图企业都在技术上有所进益,已经开始将基于大数据的人工智能应用于电子地图之上。 这将为用户的生活带来更加优质的体验,直播,同时也有利于收集到更深一层的大数据,推动电子地图行业的进一步发展。 一、地图大数据种类多样,不同形式需不同收集方法 想要搞清地图中的大数据来源,就需要对数据进行分类。而要明白数据分类,首先要理解地图图层的概念。
上图为地图图层分布 上图是地图图层的分布,第一层是人、第二层是建筑、第三层是街道、最底层是实际空间。由此不难看出,电子地图对实际空间的表达方式是通过不同图层进行描述,然后将这些图层叠加的过程。地图的应用目标不同,叠加的图层也有所区别,这样才能针对不同目标展示我们所需的信息内容。 此外,还需要简单了解一下矢量模型和栅格模型这两种基础的地图模型概念。 矢量模型:通过多个XY/XYZ坐标将自然界的地物以点线面的方式进行表达。
栅格模型/瓦片模型:用方格对实物进行模拟。
直播,AI成为下一个技术风口" src="http://www.wzatv.cc/atv/uploads/allimg/170217/23362AS0_0.png" />
目前我们所知的互联网电子地图及多数手机地图APP都是基于栅格模型的地图服务。它们由10~20层左右的不同分辨率的图片组成。根据用户缩放的级数,选择不同分辨率的栅格拼成完整的地图。平时网速慢的时候,我们会看到地图在显示过程中变成一个个方块,就是由于这个原因。 在电子地图的形成过程中,图层相当重要。此处引入底图概念,它是电子地图中最基本的地物外形数据及相关的附加信息,如河流、道路、桥梁、交通路况等。 在此基础上,我们才能够叠加如卫星图、POI等适应各种需要的图层。通常情况下,电子地图需要选取必要的矢量数据项,再通过地图美工的绘制渲染得到整套不同分辨率的栅格地图。 随着航拍、卫星拍摄及遥感技术的进步,加之对成本及收益的考虑,底图数据的收集已基本不采用实地采集方法,而是通过官方地图、实地外采及航空照片和卫星照片的制作加以收集。 在国内,此部分数据采集需国家认定资质,供应商主要是四维图新和高德,而谷歌、苹果等其他商家则向这两家购买相关数据。 第二种是POI(Point of Interest,即信息点)数据。这部分属于最简单的矢量数据,也就是坐标点标注数据,包括饭店、酒店、加油站、ATM机等与生活密不可分的地点,是电子地图上最常用的数据图层。 这部分数据的内容比较庞杂,一般通过整合GPS摄像机、委托数据供应商、从互联网或企业获取等方法获得。值得注意的是,POI数据的编辑更新比较简单,也常被用于动态数据的标注,例如车辆定位标注等。 最后是其他图层与数据。包括交通状况图、街景图、三维图、楼盘图及室内图等等,这部分的数据采集方式也是五花八门。例如交通拥堵数据来源于与交通部门有较深合作关系的数据供应商,三维数据依赖于激光扫描及手工建模等方式,街景则需依赖实地采集拍摄等。 由此可见电子地图的数据图层应用范围之大与应用领域之广,其采集方法及来源渠道也难以一言蔽之,大数据的重要性更是在电子地图行业中体现的淋漓尽致。在大数据的获取方面,中国市场中的电子地图企业可谓各具特色。 二、企业获取大数据各具特色,国内外电子地图市场存差异 关于这一话题,可将中国市场中各大电子地图企业的特点进行简单列举,由此形成对比: 谷歌地图是互联网地图的领跑者,其地图数据来自高德,卫星数据来自DigitalGlobe,街景数据则自主采集; (责任编辑:本港台直播) |