在其下一阶段,Anthem 将开始把认知自动化加入到理赔处理过程,为裁判腾出时间来关注那些需要添加支持水平的患者。「通过部署可预测的和规定好的分析以及机器学习算法,我们能够处理以一个更具成本效益的方式处理结构化和非结构化的数据,」Chennuru 说。首先,该系统将识别出任何叩待解决和需要具体行动过程建议的潜在问题。随着系统的成熟,如果它的分析达到一定的确定性阈值,它自己便可以基于所有的信号和输入开始解决某些问题。如果确定性水平低于该阈值,那么裁判将手动查看并解决索赔问题。由于系统的持续学习能力可以随着时间推移对裁判成功解决问题的过程进行监控,该系统将把适当的行动与具体问题相关联,从而不断提高其自动分辨精度和效率。 在第三阶段,随着 Anthem 对认知参与的深入实践,该公司将更广泛地利用其神经网络和深度学习,来一对一地为医疗保健供应商推荐个性化的病患护理计划。在从单纯的索赔处理任务到积极参与进客户关怀的转变中,Anthem 将能够审查病人的病史并向供应商提供未来护理计划的建议。 Anthem 半监督机器学习能力基准教导系统如何打破问题、组织它们并确定最佳反应。在测试期间,观察者会将系统行为与性能和传统的人为驱动方法进行比较,以衡量系统的效率和准确性。 该公司目前正在收集和处理数据、训练系统以及流程化其解决方案架构和技术,且由于索赔管理认知洞见的帮助,全部成果都很乐观。自动裁决系统的原型计划将于 2017 年推出,随后几个月会有一个最低可行的产品版本问世。 在多团队合作——映射用例以实现结果、评估价值证明并优化团队在数据准备、算法调整和程序可用性供应方面的方法——的帮助下,Anthem 建立了广泛的认知能力。「最终,」Chennuru 说,「我们将能够在许多领域利用该平台,比如基于价值的分析、人口健康管理和质量管理,以及在弥合保健和医疗成本差距方面发展洞见。」Anthem 希望实现尽可能多的企业认知活动,从而训练其模型、优化其程序并发展其认知智能来帮助公司更好地为会员服务。 亚马逊的做法 报告这里插入了亚马逊副总裁兼 CEO 的技术顾问 Maria Renz 和 Alexa 主管 Toni Reid 介绍亚马逊 Alexa 和 Echo 上的开发经验: 随着 2017 年人类和机器智能历史上最激动人心的时刻的到来,亚马逊团队正大开脑洞绘制新蓝图。在亚马逊,语音已经在许多方面从根本上改善了人与技术的交互方式。虽然做到像人一般还很遥远,但我们已站在人工智能和语音技术的诸多元素的起点上。语音将复杂问题简化为最自然方便的用户界面,每天克服着令人难以置信的困难。 Amazon Echo 的原始灵感来自星际迷航计算机。我们想创建一个完全由语音控制的云计算机,你可以自然交流的方式向它提问,发出指示,然后它为你做事。尽管我们目前还没实现这一目标,但那是我们的愿景。 Echo 背后的语音和大脑 Alexa 的主要功能之一是:它提供一个在特征与自然语言理解以及精度提高方面可以越变越聪明的云服务。由于具有云处理器,Alexa 每天每小时不断地学习、添加功能,使得关于客户的创新和特征添加变得更容易。
自 2014 年 11 月推出 Echo 以来,我们为 Alexa 添加了超过 7000 多项技能(skill)。Alexa 出现在了所有的 Echo 系列产品中,现在其他亚马逊硬件(Fire TV 和 Fire 平板电脑)和第三方设备(如 Nucleus 对讲系统,联想智能扬声器助手和 LG Smart InstaView 冰箱)也嵌入了 Alexa。Alexa 还被嵌入到福特和大众汽车公司的汽车中。 就其覆盖的浅表区域以及搜索材料的准确性而言,Alexa 可以很好地理解用户。即使如此,语音技术也面临着持续的挑战。当我们开始工作时,这项技术甚至不存在——我们不得不发明它。我们很幸运有 AWS 云作为支持力量,有一个极其聪明的语音专家团队,其中包括才华横溢的语音科学家正努力解决这些问题。 我们看到人工智能的机遇以及对客户的利益几乎是无限的。现在,Alexa 主要通过 Echo 硬件运行,但在将来其处理器将通过无数的系统和应用程序不断扩展。我们通过使用 Alexa 技能工具包(ASK)、Smart Home Skill API 和 Alexa Voice Service API 为开发人员提供一系列免费、自助的公共 API,从而使实施过程变得更加简单。 最终,我们在机器智能、神经网络和语音识别增强领域的发展应该以更加有意义的方式为客户提供有用的新功能。 (责任编辑:本港台直播) |