指数级数据增长:数字世界——即我们每年创造和复制的数据——每 12 个月就会翻倍。事实上,预计到 2020 年它将达到 44 皆字节(zettabyte)。我们还知道,随着来自物联网,暗物质分析和其他来源的新信号激增,数据将增长得更快。从商业角度来看,这种爆炸式增长将转化为比以往任何时候都更有潜在价值的数据源。除了使用传统分析技术揭开新洞见的潜力之外,这些结构化数据以及大量驻留在深度网络中的非结构化数据,对机器智能的进步至关重要。这些系统消耗的数据越多,通过发现关系,模式和潜在暗示,它们就能变得「更聪明」。 要想有效管理快速增长的数据量,就必需用高级方法来掌握数据,存储,保留,访问,上下文和管理。从连接设备生成的信号到所有业务和功能系统历史交易数据背后的线路电平(line-level)细节,处理数据资产成为机器智能目标的关键组成部分。 运行速度更快的分布式系统:随着数据量和分析复杂度的增加,能让个人用户可以访问数据的分布式网络已然更加强大。如今,我们可以快速地处理、搜索和操纵大量数据,这在几年前是不可能的。当代微处理器的性能是 1971 年出的第一款单芯片微处理器性能的 400 万倍 [6]。微处理器的这种强大性能使得先进系统(比如,支持多核和并行处理)的设计成为可能。同样,它也使得我们能够设计出先进数据存储技术,用来支持快速检索和存档数据分析。从 MapReduce、内存计算、机器学习技术(比如谷歌的张量处理单元)的硬件集成中,我们可以看到技术正在发展,优化我们有效处理指数级数据的能力。 除了纯粹性能和速度方面的提高,分布式网络的应用范围也越来越广。它们现在可以与云基础设施、云平台和云应用程序进行无缝对接,并能够消化和分析不断增长的云数据体量。它们也提供对来自网络「边缘(edge)」功能,比如物联网、传感器和嵌入式智能设备的流数据进行分析和驱动所需的能力。 更智能的算法:近年来,日益强大的机器学习算法正朝着实现认知计算的原始目标——模拟人类思维过程——的方向稳步推进。 由于机器智能使用实例将于未来 18 到 24 个月内出现 [7],以下这些算法性能可能会在公共及私营单位得到更广泛的应用: 优化、规划、调度:在更成熟的认知算法中,优化实现了有限资源权衡和复杂决策的自动化。同样,规划和调度算法设计了一系列动作来满足目标处理和约束观察的需求。 机器学习:通过接触数据而无需遵循明确编程指令,计算机系统正在增强改善性能的能力。机器学习的核心是自动发现数据中的模式。模式一旦确定便可用来做预测。
深度学习:开发人员正致力于涉及人工神经网络的机器学习算法,其灵感来源于大脑结构和功能。互联模块运行的数学模型是基于大量输入数据的处理结果进行连续调整。深度学习可以是监督型(需要人为干预来训练基础模型的演化)或无监督型(基于自我评价来自主改善模型)。 概率推理:人工智能的新性能是使用图形分析和贝叶斯网络来确定随机变量的条件依赖性。 语义计算:此认知范畴包括计算机视觉(分析图像的能力)、语音识别(分析和解释人类语言的能力)和各种文本分析能力,用以理解自然表达中的意图和计算内容的语义等。然后使用这些信息来支持数据的分类、映射和检索。 自然语言引擎:自然语言引擎可以理解人类的手写文本,还能以许多复杂的方式来操纵那些文本,比如自动识别文档中提到的所有人和地点;识别一个文档的主题;或从一堆人类可读的合同文本中提取出条件和术语并制成表格。两个常见的自然语言引擎是:侧重于消费人类语言的自然语言处理技术和侧重于创建自然语言输出的自然语言生成技术。 (责任编辑:本港台直播) |