译者:弗格森 刘小芹
新智元启动新一轮大招聘:COO、执行总编、主编、高级编译、主笔、运营总监、客户经理、咨询总监、行政助理等 9 大岗位全面开放。 简历投递:j[email protected] HR 微信:13552313024 新智元为COO和执行总编提供最高超百万的年薪激励;为骨干员工提供最完整的培训体系、高于业界平均水平的工资和奖金。 加盟新智元,与人工智能业界领袖携手改变世界。 开源地址:github地址:https://github.com/dmorr-google/word_sense_disambigation_corpora 理解文本中特定单词的不同含义对于语言的理解是一个关键。例如,在句子“他将获得重组后的公司的股票”中,我们知道,根据牛津英语字典(NOAD)的定义,这一语境下,“股票”(stock)一词指的是“商业或公司通过发行和认购股份筹集的资本”。但是,在牛津英语字典中,stock 还有超过10种其他的定义,比如“商店中的货物”或者“中世纪一种用于惩罚的的工具”。对于计算机算法来说,区分这些含义非常困难,以致于这一任务过去通常被描述为“AI 完全问题”(AI-complete)。 为了进一步解决这一挑战,谷歌1月19日宣布,基于常用的MASC和SemCor 数据库的词义注释正式发布,这些注释是基于牛津英语词典人为注释的。谷歌还同时发布了从NOAD 词义到English Wordnet 转换的描述,这是一个在研究者社区更加常用的数据库。这是最大的全词义注释英语语料库之一。 分辨文本中的单词含义对于人类来说非常简单,因为关于世界是如何运转的、这些机制与语言有什么联系,我们已经积累了大量的常识。举例来说,在商业中,“stock” 指的是金融,而在商店中,“stock”更可能指货架上的商品,虽然商店从某种程度上来说也是商业的一部分。以机器可以使用的形式获取足够的知识,然后将其应用于理解文本中的单词,这是一个挑战。 监督式词义消歧(WSD)是使用人类标记的数据构建机器学习系统中的一个难题,该系统可以为文本中使用的所有词语对应词典义项(与实体消歧相反,它主要聚焦于名词,并且大部分是正确的) 。打造一个监督式模型,并且要比简单地分配最常见的词义而不考虑文本背景有更好地表现,这是相对更难的,但是,监督式模型在拥有海量的训练数据时,可以表现得更好。 谷歌工程师Colin Evans 和 Dayu Yuan 在博客上说,通过发布这一数据库,他们希望整个研究社区能够进一步改进算法,进而让机器更好地理解语言,让更多的应用成为可能: 比如: 推动从文本中自动构建数据库,以回答问题和联系文本中的知识。例如,理解“半引擎”是一种汽车机械,“机车引擎”是一种火车,或者“Kanye West是一个 star ”,意味着他是一个名人,但“Sirius 是一种star “意味着它是一个天文物体。消除搜索中的词语含义,使得“date palm ”和“date night ”或“web spam”和“spam recipe”在不同的场景下有不同的解释,并且从查询返回的文档具有相同搜索时蕴含的相同含义。 人工标注 在我们发布的人工标注的数据集中,每个义项的注释由5位评估者进行标记。为了确保义项标注的高质量,评估者首先使用金注释进行训练,也就是在开始标记注释任务之前,在一个单独的试验研究中,由经验丰富的语言学家进行标记。下图是我们的注释工具中,评估者工作页面的一个示例:
页面的左侧列出了单词的所有词典义项(这里以单词“general”为例),还提供了从词典中抽取的例句。例句中突出显示的是待注释词汇,显示在工作页面的右侧。除了为待注释词汇标注词典里的义项外,评估者还可以标注三种例外情况:(1)单词拼写错误;(2)词典义项中没有符合的;(3)无法确定。评估者可以检查该词在该句子里是否是一个比喻用法,并留下评论。 该语料库里的释义标注任务在评分者间信度评分(inter-rater reliability score)中得到 0.869 的分数,使用 Krippendorff 的 α 方法(α> = 0.67 被认为是可接受的再现性水平,α> = 0.80 被认为是高度可重复的结果)(Krippendorff,2004 )。注释计数如下表所示: Wordnet 映射 (责任编辑:本港台直播) |