译者:刘小芹 胡祥杰 :COO、执行总编、主编、高级编译、主笔、运营总监、客户经理、咨询总监、行政助理等 9 大岗位全面开放。 简历投递:j[email protected] HR 微信:13552313024 新智元为COO和执行总编提供最高超百万的年薪激励;为骨干员工提供最完整的培训体系、高于业界平均水平的工资和奖金。 加盟新智元,与人工智能业界领袖携手改变世界。 【新智元导读】ICLR 2017 将于2017年4月24日至26日在法国土伦(toulon)举行,11月4日已经停止接收论文。本文汇总了本年度NLP、无监督学习、对抗式生成、自动编码、增强学习、随机循环梯度渐变、RNN等多个领域的150篇论文。其中不乏Yoshua Bengio、Ian Goodfellow、Yann LeCun、李飞飞、邓力等学者的作品。从收录的论文主题来看,生成和对抗生成式网络的研究成为热点,一共有45篇论文被提交,数量排在第一。文内附下载。
ICLR 2017 将于2017年4月24日至26日在法国土伦举行,向大会提交的深度学习论文非常多,无疑这将成为一场盛会(下图展示了提交的论文题目中最频繁出现的单词),可以看到,深度、学习、递归、模型、网络、表征、对抗式、生成等成为热词。
与ICLR 2016 相比有哪些变化? 将使用 OpenReview(而不是 CMT)作为会议通道。此外,提交的论文将交由 OpenReview 管理(无需提交到 arXiv)。 审查程序将变成两轮。第一轮中,审稿人只能提出澄清性的疑问。程序委员会将评出最佳审稿奖,atv,得奖的审稿人将被列入 ICLR 2018 的候选人名单中。研讨会通道鼓励那些具有高度创新性,但可能未得到充分验证的提交论文。 评审委员会说,采用 OpenReview 的目标是提高整体审稿过程的质量。OpenReview 可以让作者随时对论文的评论进行回复。此外,社区中的任何人都可以对提交的论文进行评论,审稿者可以利用公开讨论来提高他们对论文的理解和评级。 下文是对提交给 ICLR 2017 的论文中与自然语言处理(NLP)相关的论文的概览,直播,由前 Google 工程师、ZEDGE数据副总裁,AI 顾问/投资者, Memkite 和 Atbrox 的创始人/联合创始人Amund Tveit整理。 ICLR 2017 – NLP 论文 在新智元微信公众号回复1113,下载全部37篇论文。 1.字符/词/句子表征 Character-aware Attention Residual Network for Sentence Representation 作者: Xin Zheng, Zhenzhou Wu Program Synthesis for Character Level Language Modeling 作者: Pavol Bielik, Veselin Raychev, Martin Vechev Words or Characters? Fine-grained Gating for Reading Comprehension 作者: Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, William W. Cohen, Ruslan Salakhutdinov Deep Character-Level Neural Machine Translation By Learning Morphology 作者: Shenjian Zhao, Zhihua Zhang Opening the vocabulary of neural language models with character-level word representations 作者: Matthieu Labeau, Alexandre Allauzen Unsupervised sentence representation learning with adversarial auto-encoder 作者: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang Offline Bilingual Word Vectors Without a Dictionary 作者: Samuel L. Smith, David H. P. Turban, Nils Y. Hammerla, Steven Hamblin Learning Word-Like Units from Joint Audio-Visual Analylsis 作者:David Harwath, James R. Glass Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling 作者: Hakan Inan, Khashayar Khosravi, Richard Socher Sentence Ordering using Recurrent Neural Networks 作者: Lajanugen Logeswaran, Honglak Lee, Dragomir Radev 2. 搜索/问答/推荐系统 Learning to Query, Reason, and Answer Questions On Ambiguous Texts 作者: Xiaoxiao Guo, Tim Klinger, Clemens Rosenbaum, Joseph P. Bigus, Murray Campbell, Ban Kawas, Kartik Talamadupula, Gerry Tesauro, Satinder Singh Group Sparse CNNs for Question Sentence Classification with Answer Sets 作者: Mingbo Ma, Liang Huang, Bing Xiang, Bowen Zhou CONTENT2VEC: Specializing Joint Representations of Product Images and Text for the task of Product Recommendation 作者: Thomas Nedelec, Elena Smirnova, Flavian Vasile Is a picture worth a thousand words? A Deep Multi-Modal Fusion Architecture for Product Classification in e-commerce 作者: Tom Zahavy, Alessandro Magnani, Abhinandan Krishnan, Shie Mannor 3.词/句嵌入 A Simple but Tough-to-Beat Baseline for Sentence Embeddings 作者: Sanjeev Arora, Yingyu Liang, Tengyu Ma Investigating Different Context Types and Representations for Learning Word Embeddings 作者: Bofang Li, Tao Liu, Zhe Zhao, Xiaoyong Du Multi-view Recurrent Neural Acoustic Word Embeddings 作者: Wanjia He, Weiran Wang, Karen Livescu A Self-Attentive Sentence Embedding 作者: Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, Yoshua Bengio (推荐关注) 5. Fine-grained Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks 作者: Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, Yoav Goldberg 4.多语言/翻译/情感 Neural Machine Translation with Latent Semantic of Image and Text 作者: Joji Toyama, Masanori Misono, Masahiro Suzuki, Kotaro Nakayama, Yutaka Matsuo Beyond Bilingual: Multi-sense Word Embeddings using Multilingual Context 作者: Shyam Upadhyay, Kai-Wei Chang, James Zhou, Matt Taddy, Adam Kalai Learning to Understand: Incorporating Local Contexts with Global Attention for Sentiment Classification 作者: Zhigang Yuan, Yuting Hu, Yongfeng Huang Adaptive Feature Abstraction for Translating Video to Language 作者: Yunchen Pu, Martin Renqiang Min, Zhe Gan, Lawrence Carin A Convolutional Encoder Model for Neural Machine Translation 作者: Jonas Gehring, Michael Auli, David Grangier, Yann N. Dauphin Fuzzy paraphrases in learning word representations with a corpus and a lexicon 作者: Yuanzhi Ke, Masafumi Hagiwara Iterative Refinement for Machine Translation 作者: Roman Novak, Michael Auli, David Grangier Vocabulary Selection Strategies for Neural Machine Translation 作者: Gurvan L’Hostis, David Grangier, Michael Auli 5.语言模型/文本理解/配对/压缩/分类/++ A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks 作者: Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, Richard Socher Gated-Attention Readers for Text Comprehension 作者: Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William W. Cohen, Ruslan Salakhutdinov A Compare-Aggregate Model for Matching Text Sequences 作者: Shuohang Wang, Jing Jiang A Context-aware Attention Network for Interactive Question Answering 作者: Huayu Li, Martin Renqiang Min, Yong Ge, Asim Kadav FastText.zip: Compressing text classification models 作者: Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Herve Jegou, Tomas Mikolov Multi-Agent Cooperation and the Emergence of (Natural) Language 作者: Angeliki Lazaridou, Alexander Peysakhovich, Marco Baroni Learning a Natural Language Interface with Neural Programmer 作者: Arvind Neelakantan, Quoc V. Le, Martin Abadi, Andrew McCallum, Dario Amodei Learning similarity preserving representations with neural similarity and context encoders 作者: Franziska Horn, Klaus-Robert Müller Adversarial Training Methods for Semi-Supervised Text Classification 作者: Takeru Miyato, Andrew M. Dai, Ian Goodfellow (推荐关注) Multi-Label Learning using Tensor Decomposition for Large Text Corpora 作者: Sayantan Dasgupta 以下论文均可在https://amundtveit.com/直接下载 ICLR 2017 —无监督深度学习论文 Unsupervised Learning Using Generative Adversarial Training And Clustering – 作者: Vittal Premachandran, Alan L. Yuille An Information-Theoretic Framework for Fast and Robust Unsupervised Learning via Neural Population Infomax 作者: Wentao Huang, Kechen Zhang Unsupervised Cross-Domain Image Generation 作者: Yaniv Taigman, Adam Polyak, Lior Wolf Unsupervised Perceptual Rewards for Imitation Learning 作者: Pierre Sermanet, Kelvin Xu, Sergey Levine Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning 作者: William Lotter, Gabriel Kreiman, David Cox Unsupervised sentence representation learning with adversarial auto-encoder – 作者: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang Unsupervised Program Induction with Hierarchical Generative Convolutional Neural Networks 作者: Qucheng Gong, Yuandong Tian, C. Lawrence Zitnick Generalizable Features From Unsupervised Learning 作者: Mehdi Mirza, Aaron Courville, Yoshua Bengio (推荐关注) 10. Reinforcement Learning with Unsupervised Auxiliary Tasks 作者: Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David Silver, Koray Kavukcuoglu 11. Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data 作者: Maximilian Karl, Maximilian Soelch, Justin Bayer, Patrick van der Smagt 12. Unsupervised Learning of State Representations for Multiple Tasks 作者: Antonin Raffin, Sebastian Höfer, Rico Jonschkowski, Oliver Brock, Freek Stulp 13. Unsupervised Pretraining for Sequence to Sequence Learning 作者: Prajit Ramachandran, Peter J. Liu, Quoc V. Le 14. Unsupervised Deep Learning of State Representation Using Robotic Priors 作者: Timothee LESORT, David FILLIAT 15. Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders 作者: Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C.H. Lee, Hugh Salimbeni, Kai Arulkumaran, Murray Shanahan 16. Deep unsupervised learning through spatial contrasting 作者: Elad Hoffer, Itay Hubara, Nir Ailon ICLR 2017 —自动编码深度学习论文 以下论文均可在https://amundtveit.com/直接下载 Revisiting Denoising Auto-Encoders 作者:Luis Gonzalo Sanchez Giraldo Epitomic Variational Autoencoders 作者: Serena Yeung, Anitha Kannan, Yann Dauphin, Li Fei-Fei (推荐关注) 3. Unsupervised sentence representation learning with adversarial auto-encoder 作者: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang 4. Tree-Structured Variational Autoencoder 作者: Richard Shin, Alexander A. Alemi, Geoffrey Irving, Oriol Vinyals 5. Lossy Image Compression with Compressive Autoencoders 作者: Lucas Theis, Wenzhe Shi, Andrew Cunningham, Ferenc Huszár 6. Variational Lossy Autoencoder 作者: Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya Sutskever, Pieter Abbeel 7. Stick-Breaking Variational Autoencoders 作者: Eric Nalisnick, Padhraic Smyth 8. ParMAC: distributed optimisation of nested functions, with application to binary autoencoders 作者: Miguel A. Carreira-Perpinan, Mehdi Alizadeh 9. Discrete Variational Autoencoders 作者: Jason Tyler Rolfe 10. Deep Unsupervised Clustering with Gaussian Mixture\Variational Autoencoders 作者: Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew,C.H. Lee, Hugh Salimbeni, Kai Arulkumaran, Murray Shanahan 11. Improving Sampling from Generative Autoencoders with Markov Chains 作者: Kai Arulkumaran, Antonia Creswell, Anil Anthony Bharath ICLR 2017 —增强学习深度学习论文 以下论文均可在https://amundtveit.com/直接下载 Stochastic Neural Networks for Hierarchical Reinforcement Learning 作者: Carlos Florensa, Yan Duan, Pieter Abbeel #Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning 作者: Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi C hen, Yan Duan, John Schulman, Filip De Turck, Pieter Abbeel Learning Invariant Feature Spaces to Transfer Skills with Reinforcement Learning 作者: Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, Se rgey Levine Deep Reinforcement Learning for Accelerating the Convergence Rate 作者: Jie Fu, Zichuan Lin, Danlu Chen, Ritchie Ng, Miao Liu, Nicholas Leonard, Jiashi Feng, Tat-Seng Chua Generalizing Skills with Semi-Supervised Reinforcement Learning 作者: Chelsea Finn, Tianhe Yu, Justin Fu, Pieter Abbeel, Sergey Levine Learning to Perform Physics Experiments via Deep Reinforcement Learning – 作者:Misha Denil, Pulkit Agrawal, Tejas D Kulkarni, Tom Erez, Peter Batta glia, Nando de Freitas Designing Neural Network Architectures using Reinforcement Learning 作者:Bowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar Reinforcement Learning with Unsupervised Auxiliary Tasks 作者: Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,David Silver, Koray Kavukcuoglu Options Discovery with Budgeted Reinforcement Learning 作者:Aurelia Lon, Ludovic Denoyer Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU 作者:Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons,Jan Kautz Multi-task learning with deep model based reinforcement learning 作者:Asier Mujika Neural Architecture Search with Reinforcement Learning 作者:: Barret Zoph, Quoc Le Tuning Recurrent Neural Networks with Reinforcement Learning 作者:: Natasha Jaques, Shixiang Gu, Richard E. Turner, Douglas Eck RL^2: Fast Reinforcement Learning via Slow Reinforcement Learning 作者:Yan Duan, John Schulman, Xi Chen, Peter Bartlett, Ilya Sutskever, Pieter Abbeel Learning to Repeat: Fine Grained Action Repetition for Deep Reinforcement Learning 作者:Sahil Sharma, Aravind S. Lakshminarayanan, Balaraman Ravindran Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening 作者:Frank S.He, Yang Liu, Alexander G. Schwing, Jian Peng Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning 作者: Joshua Achiam, Shankar Sastry Learning to Compose Words into Sentences with Reinforcement Learning 作者:Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, Wang Ling Spatio-Temporal Abstractions in Reinforcement Learning Through Neural Encoding 作者:Nir Baram, Tom Zahavy, Shie Mannor Modular Multitask Reinforcement Learning with Policy Sketches 作者:Jacob Andreas, Dan Klein, Sergey Levine Combating Deep Reinforcement Learning’s Sisyphean Curse with Intrinsic Fear 作者:Zachary C. Lipton, Jianfeng Gao, Lihong Li, Jianshu Chen, Li Deng (推荐关注) ICLR 2017 生成和对抗式生成论文(45篇) 以下论文均可在https://amundtveit.com/直接下载 Unsupervised Learning Using Generative Adversarial Training And Clustering 作者: Vittal Premachandran, Alan L. Yuille Improving Generative Adversarial Networks with Denoising Feature Matching 作者: David Warde-Farley, Yoshua Bengio Generative Adversarial Parallelization 作者: Daniel Jiwoong Im, He Ma, Chris Dongjoo Kim, Graham Taylor b-GAN: Unified Framework of Generative Adversarial Networks 作者: Masatosi Uehara, Issei Sato, Masahiro Suzuki, Kotaro Nakayama, Yutaka Matsuo Generative Adversarial Networks as Variational Training of Energy Based Models 作者:Shuangfei Zhai, Yu Cheng, Rogerio Feris, Zhongfei Zhang Boosted Generative Models 作者: Aditya Grover, Stefano Ermon Adversarial examples for generative models 作者: Jernej Kos, Dawn Song Mode Regularized Generative Adversarial Networks 作者: Tong Che, Yanran Li, Athul Jacob, Yoshua Bengio, Wenjie Li Variational Recurrent Adversarial Deep Domain Adaptation 作者:: Sanjay Purushotham, Wilka Carvalho, Tanachat Nilanon, Yan Liu Structured Interpretation of Deep Generative Models 作者: N. Siddharth, Brooks Paige, Alban Desmaison, Jan-Willem van de Meent, Frank Wood, Noah D. Goodman, Pushmeet Kohli, Philip H.S. Torr Inference and Introspection in Deep Generative Models of Sparse Data 作者:Rahul G. Krishnan, Matthew Hoffman Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy 作者: Dougal J. Sutherland, Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alex Smola, Arthur Gretton Unsupervised sentence representation learning with adversarial auto-encoder 作者: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang Unsupervised Program Induction with Hierarchical Generative Convolutional Neural Networks 作者: Qucheng Gong, Yuandong Tian, C. Lawrence Zitnick A Theoretical Framework for Robustness of (Deep) Classifiers against Adversarial Noise 作者: Beilun Wang, Ji Gao, Yanjun Qi On the Quantitative Analysis of Decoder-Based Generative Models 作者: Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, Roger Grosse Evaluation of Defensive Methods for DNNs against Multiple Adversarial Evasion Models 作者:Xinyun Chen, Bo Li, Yevgeniy Vorobeychik Calibrating Energy-based Generative Adversarial Networks 作者: Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard Hovy, Aaron Courville Inverse Problems in Computer Vision using Adversarial Imagination Priors 作者: Hsiao-Yu Fish Tung, Katerina Fragkiadaki Towards Principled Methods for Training Generative Adversarial Networks作者: Martin Arjovsky, Leon Bottou Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning 作者: Dilin Wang, Qiang Liu Multi-view Generative Adversarial Networks 作者: Mickaël Chen, Ludovic Denoyer LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation 作者: Jianwei Yang, Anitha Kannan, Dhruv Batra, Devi Parikh Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks 作者: Emily Denton, Sam Gross, Rob Fergus Generative Adversarial Networks for Image Steganography 作者: Denis Volkhonskiy, Boris Borisenko, Evgeny Burnaev Unrolled Generative Adversarial Networks 作者: Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein Generative Multi-Adversarial Networks 作者: Ishan Durugkar, Ian Gemp, Sridhar Mahadevan Joint Multimodal Learning with Deep Generative Models 作者: Masahiro Suzuki, Kotaro Nakayama, Yutaka Matsuo Fast Adaptation in Generative Models with Generative Matching Networks 作者: Sergey Bartunov, Dmitry P. Vetrov Adversarially Learned Inference 作者: Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier Mastropietro, Aaron Courville Perception Updating Networks: On architectural constraints for interpretable video generative models 作者: Eder Santana, Jose C Principe Energy-based Generative Adversarial Networks 作者:Junbo Zhao, Michael Mathieu, Yann LeCun Simple Black-Box Adversarial Perturbations for Deep Networks 作者: Nina Narodytska, Shiva Kasiviswanathan Learning in Implicit Generative Models 作者: Shakir Mohamed, Balaji Lakshminarayanan On Detecting Adversarial Perturbations 作者: Jan Hendrik Metzen, Tim Genewein, Volker Fischer, Bastian Bischoff Delving into Transferable Adversarial Examples and Black-box Attacks 作者: Yanpei Liu, Xinyun Chen, Chang Liu, Dawn Song Adversarial Feature Learning 作者:Jeff Donahue, Philipp Krähenbühl, Trevor Darrell Generative Paragraph Vector 作者: Ruqing Zhang, Jiafeng Guo, Yanyan Lan, Jun Xu, Xueqi Cheng Adversarial Machine Learning at Scale 作者: Alexey Kurakin, Ian J. Goodfellow, Samy Bengio Adversarial Training Methods for Semi-Supervised Text Classification 作者: Takeru Miyato, Andrew M. Dai, Ian Goodfellow Sampling Generative Networks: Notes on a Few Effective Techniques 作者: Tom White Adversarial examples in the physical world 作者: Alexey Kurakin, Ian J. Goodfellow, Samy Bengio Improving Sampling from Generative Autoencoders with Markov Chains 作者:Kai Arulkumaran, Antonia Creswell, Anil Anthony Bharath Neural Photo Editing with Introspective Adversarial Networks 作者: Andrew Brock, Theodore Lim, J.M. Ritchie, Nick Weston Learning to Protect Communications with Adversarial Neural Cryptography 作者: Martín Abadi, David G. ICLR 2017 -随机/策略梯度论文 以下论文均可在https://amundtveit.com/直接下载 Improving Policy Gradient by Exploring Under-appreciated Rewards 作者:: Ofir Nachum, Mohammad Norouzi, Dale Schuurmans Leveraging Asynchronicity in Gradient Descent for Scalable Deep Learning 作者:Jeff Daily, Abhinav Vishnu, Charles Siegel Adding Gradient Noise Improves Learning for Very Deep Networks 作者:: Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Lukasz Kaiser, Karol Kurach, Ilya Sutskever, James Martens Inefficiency of stochastic gradient descent with larger mini-batches (and more learners) 作者: Onkar Bhardwaj, Guojing Cong Improving Stochastic Gradient Descent with Feedback 作者: Jayanth Koushik, Hiroaki Hayashi PGQ: Combining policy gradient and Q-learning 作者: Brendan O’Donoghue, Remi Munos, Koray Kavukcuoglu, Volodymyr Mnih SGDR: Stochastic Gradient Descent with Restarts 作者: Ilya Loshchilov, Frank Hutter Neural Data Filter for Bootstrapping Stochastic Gradient Descent 作者: Yang Fan, Fei Tian, Tao Qin, Tie-Yan Liu Entropy-SGD: Biasing Gradient Descent Into Wide Valleys 作者: Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun (推荐关注) Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic 作者: Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E. Turner, Sergey Levine Batch Policy Gradient Methods for Improving Neural Conversation Models 作者:Kirthevasan Kandasamy, Yoram Bachrach, Ryota Tomioka, Daniel Tarlow, David Carter Training Long Short-Term Memory With Sparsified Stochastic Gradient Descent 作者:: Maohua Zhu, Minsoo Rhu, Jason Clemons, Stephen W. Keckler, Yuan Xie (推荐关注) Parallel Stochastic Gradient Descent with Sound Combiners 作者: Saeed Maleki, Madanlal Musuvathi, Todd Mytkowicz, Yufei Ding Gradients of Counterfactuals 作者: Mukund Sundararajan, Ankur Taly, Qiqi Yan ICLR 2017 — RNN深度学习论文 论文均可在https://amundtveit.com/直接下载 (因微信字数限制,请移步https://amundtveit.com/查看更多,网站可直接下载论文) :COO、执行总编、主编、高级编译、主笔、运营总监、客户经理、咨询总监、行政助理等 9 大岗位全面开放。 简历投递:j[email protected] HR 微信:13552313024 (责任编辑:本港台直播) |