本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

报码:【j2开奖】ICLR 2017深度学习(提交)论文汇总:NLP、无监督学习、自动编码、RL、RNN(150论文下载

时间:2016-11-13 14:47来源:香港现场开奖 作者:开奖直播现场 点击:
译者:刘小芹 胡祥杰 :COO、执行总编、主编、高级编译、主笔、运营总监、客户经理、咨询总监、行政助理等 9 大岗位全面开放。 简历投递:j [email protected] HR 微信: 13552313024 新智元

译者:刘小芹 胡祥杰

  :COO、执行总编、主编、高级编译、主笔、运营总监、客户经理、咨询总监、行政助理等 9 大岗位全面开放。

  简历投递:j[email protected]

  HR 微信:13552313024

  新智元为COO和执行总编提供最高超百万的年薪激励;为骨干员工提供最完整的培训体系、高于业界平均水平的工资和金。

  加盟新智元,与人工智能业界领袖携手改变世界。

  【新智元导读】ICLR 2017 将于2017年4月24日至26日在法国土伦(toulon)举行,11月4日已经停止接收论文。本文汇总了本年度NLP、无监督学习、对抗式生成、自动编、增强学习、随机循环梯度渐变、RNN等多个领域的150篇论文。其中不乏Yoshua Bengio、Ian Goodfellow、Yann LeCun、李飞飞、邓力等学者的作品。从收录的论文主题来看,生成和对抗生成式网络的研究成为热点,一共有45篇论文被提交,数量排在第一。文内附下载。

  

报码:【j2开奖】ICLR 2017深度学习(提交)论文汇总:NLP、无监督学习、自动编码、RL、RNN(150论文下载)

  ICLR 2017 将于2017年4月24日至26日在法国土伦举行,向大会提交的深度学习论文非常多,无疑这将成为一场盛会(下图展示了提交的论文题目中最频繁出现的单词),可以看到,深度、学习、递归、模型、网络、表征、对抗式、生成等成为热词。

  

报码:【j2开奖】ICLR 2017深度学习(提交)论文汇总:NLP、无监督学习、自动编码、RL、RNN(150论文下载)

  与ICLR 2016 相比有哪些变化?

  将使用 OpenReview(而不是 CMT)作为会议通道。此外,提交的论文将交由 OpenReview 管理(无需提交到 arXiv)。

  审查程序将变成两轮。第一轮中,审稿人只能提出澄清性的疑问。程序委员会将评出最佳审稿atv,得奖的审稿人将被列入 ICLR 2018 的候选人名单中。研讨会通道鼓励那些具有高度创新性,但可能未得到充分验证的提交论文。

  评审委员会说,采用 OpenReview 的目标是提高整体审稿过程的质量。OpenReview 可以让作者随时对论文的评论进行回复。此外,社区中的任何人都可以对提交的论文进行评论,审稿者可以利用公开讨论来提高他们对论文的理解和评级。

  下文是对提交给 ICLR 2017 的论文中与自然语言处理(NLP)相关的论文的概览,直播,由前 Google 工程师、ZEDGE数据副总裁,AI 顾问/投资者, Memkite 和 Atbrox 的创始人/联合创始人Amund Tveit整理。

  ICLR 2017 – NLP 论文

  在新智元微信公众号回复1113,下载全部37篇论文。

  1.字符/词/句子表征

Character-aware Attention Residual Network for Sentence Representation

  作者: Xin Zheng, Zhenzhou Wu

Program Synthesis for Character Level Language Modeling

  作者: Pavol Bielik, Veselin Raychev, Martin Vechev

Words or Characters? Fine-grained Gating for Reading Comprehension

  作者: Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, William W. Cohen, Ruslan Salakhutdinov

Deep Character-Level Neural Machine Translation By Learning Morphology

  作者: Shenjian Zhao, Zhihua Zhang

Opening the vocabulary of neural language models with character-level word representations

  作者: Matthieu Labeau, Alexandre Allauzen

Unsupervised sentence representation learning with adversarial auto-encoder

  作者: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang

Offline Bilingual Word Vectors Without a Dictionary

  作者: Samuel L. Smith, David H. P. Turban, Nils Y. Hammerla, Steven Hamblin

Learning Word-Like Units from Joint Audio-Visual Analylsis

  作者:David Harwath, James R. Glass

Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling

  作者: Hakan Inan, Khashayar Khosravi, Richard Socher

Sentence Ordering using Recurrent Neural Networks

  作者: Lajanugen Logeswaran, Honglak Lee, Dragomir Radev

  2. 搜索/问答/推荐系统

Learning to Query, Reason, and Answer Questions On Ambiguous Texts

  作者: Xiaoxiao Guo, Tim Klinger, Clemens Rosenbaum, Joseph P. Bigus, Murray Campbell, Ban Kawas, Kartik Talamadupula, Gerry Tesauro, Satinder Singh

Group Sparse CNNs for Question Sentence Classification with Answer Sets

  作者: Mingbo Ma, Liang Huang, Bing Xiang, Bowen Zhou

CONTENT2VEC: Specializing Joint Representations of Product Images and Text for the task of Product Recommendation

  作者: Thomas Nedelec, Elena Smirnova, Flavian Vasile

Is a picture worth a thousand words? A Deep Multi-Modal Fusion Architecture for Product Classification in e-commerce

  作者: Tom Zahavy, Alessandro Magnani, Abhinandan Krishnan, Shie Mannor

  3.词/句嵌入

A Simple but Tough-to-Beat Baseline for Sentence Embeddings

  作者: Sanjeev Arora, Yingyu Liang, Tengyu Ma

Investigating Different Context Types and Representations for Learning Word Embeddings

作者: Bofang Li, Tao Liu, Zhe Zhao, Xiaoyong Du

Multi-view Recurrent Neural Acoustic Word Embeddings

  作者: Wanjia He, Weiran Wang, Karen Livescu

A Self-Attentive Sentence Embedding

  作者: Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, Yoshua Bengio

  (推荐关注)

  5. Fine-grained Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks

  作者: Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, Yoav Goldberg

  4.多语言/翻译/情感

Neural Machine Translation with Latent Semantic of Image and Text

  作者: Joji Toyama, Masanori Misono, Masahiro Suzuki, Kotaro Nakayama, Yutaka Matsuo

Beyond Bilingual: Multi-sense Word Embeddings using Multilingual Context

  作者: Shyam Upadhyay, Kai-Wei Chang, James Zhou, Matt Taddy, Adam Kalai

Learning to Understand: Incorporating Local Contexts with Global Attention for Sentiment Classification

  作者: Zhigang Yuan, Yuting Hu, Yongfeng Huang

Adaptive Feature Abstraction for Translating Video to Language

  作者: Yunchen Pu, Martin Renqiang Min, Zhe Gan, Lawrence Carin

A Convolutional Encoder Model for Neural Machine Translation

  作者: Jonas Gehring, Michael Auli, David Grangier, Yann N. Dauphin

Fuzzy paraphrases in learning word representations with a corpus and a lexicon

  作者: Yuanzhi Ke, Masafumi Hagiwara

Iterative Refinement for Machine Translation

  作者: Roman Novak, Michael Auli, David Grangier

Vocabulary Selection Strategies for Neural Machine Translation

  作者: Gurvan L’Hostis, David Grangier, Michael Auli

  5.语言模型/文本理解/配对/压缩/分类/++

A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks

  作者: Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, Richard Socher

Gated-Attention Readers for Text Comprehension

  作者: Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William W. Cohen, Ruslan Salakhutdinov

A Compare-Aggregate Model for Matching Text Sequences

  作者: Shuohang Wang, Jing Jiang

A Context-aware Attention Network for Interactive Question Answering

  作者: Huayu Li, Martin Renqiang Min, Yong Ge, Asim Kadav

FastText.zip: Compressing text classification models

  作者: Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Herve Jegou, Tomas Mikolov

Multi-Agent Cooperation and the Emergence of (Natural) Language

  作者: Angeliki Lazaridou, Alexander Peysakhovich, Marco Baroni

Learning a Natural Language Interface with Neural Programmer

  作者: Arvind Neelakantan, Quoc V. Le, Martin Abadi, Andrew McCallum, Dario Amodei

Learning similarity preserving representations with neural similarity and context encoders

  作者: Franziska Horn, Klaus-Robert Müller

Adversarial Training Methods for Semi-Supervised Text Classification 作者: Takeru Miyato, Andrew M. Dai, Ian Goodfellow

  (推荐关注)

Multi-Label Learning using Tensor Decomposition for Large Text Corpora

  作者: Sayantan Dasgupta

  以下论文均可在https://amundtveit.com/直接下载

  ICLR 2017 —无监督深度学习论文

Unsupervised Learning Using Generative Adversarial Training And Clustering – 作者: Vittal Premachandran, Alan L. Yuille

An Information-Theoretic Framework for Fast and Robust Unsupervised Learning via Neural Population Infomax

  作者: Wentao Huang, Kechen Zhang

Unsupervised Cross-Domain Image Generation

  作者: Yaniv Taigman, Adam Polyak, Lior Wolf

Unsupervised Perceptual Rewards for Imitation Learning

  作者: Pierre Sermanet, Kelvin Xu, Sergey Levine

Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning

  作者: William Lotter, Gabriel Kreiman, David Cox

Unsupervised sentence representation learning with adversarial auto-encoder – 作者: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang

Unsupervised Program Induction with Hierarchical Generative Convolutional Neural Networks

作者: Qucheng Gong, Yuandong Tian, C. Lawrence Zitnick

Generalizable Features From Unsupervised Learning

  作者: Mehdi Mirza, Aaron Courville, Yoshua Bengio

  (推荐关注)

  10. Reinforcement Learning with Unsupervised Auxiliary Tasks

  作者: Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David Silver, Koray Kavukcuoglu

  11. Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data

  作者: Maximilian Karl, Maximilian Soelch, Justin Bayer, Patrick van der Smagt

  12. Unsupervised Learning of State Representations for Multiple Tasks

  作者: Antonin Raffin, Sebastian Höfer, Rico Jonschkowski, Oliver Brock, Freek Stulp

  13. Unsupervised Pretraining for Sequence to Sequence Learning

  作者: Prajit Ramachandran, Peter J. Liu, Quoc V. Le

  14. Unsupervised Deep Learning of State Representation Using Robotic Priors

  作者: Timothee LESORT, David FILLIAT

  15. Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders

  作者: Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C.H. Lee, Hugh Salimbeni, Kai Arulkumaran, Murray Shanahan

  16. Deep unsupervised learning through spatial contrasting

  作者: Elad Hoffer, Itay Hubara, Nir Ailon

  ICLR 2017 —自动编深度学习论文

  以下论文均可在https://amundtveit.com/直接下载

Revisiting Denoising Auto-Encoders

  作者:Luis Gonzalo Sanchez Giraldo

Epitomic Variational Autoencoders

  作者: Serena Yeung, Anitha Kannan, Yann Dauphin, Li Fei-Fei

  (推荐关注)

  3. Unsupervised sentence representation learning with adversarial auto-encoder

  作者: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang

  4. Tree-Structured Variational Autoencoder

  作者: Richard Shin, Alexander A. Alemi, Geoffrey Irving, Oriol Vinyals

  5. Lossy Image Compression with Compressive Autoencoders

  作者: Lucas Theis, Wenzhe Shi, Andrew Cunningham, Ferenc Huszár

  6. Variational Lossy Autoencoder

  作者: Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya Sutskever, Pieter Abbeel

  7. Stick-Breaking Variational Autoencoders

  作者: Eric Nalisnick, Padhraic Smyth

  8. ParMAC: distributed optimisation of nested functions, with application to binary autoencoders

  作者: Miguel A. Carreira-Perpinan, Mehdi Alizadeh

  9. Discrete Variational Autoencoders 作者: Jason Tyler Rolfe

  10. Deep Unsupervised Clustering with Gaussian Mixture\Variational Autoencoders

  作者: Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew,C.H. Lee, Hugh Salimbeni, Kai Arulkumaran, Murray Shanahan

  11. Improving Sampling from Generative Autoencoders with Markov Chains

  作者: Kai Arulkumaran, Antonia Creswell, Anil Anthony Bharath

  ICLR 2017 —增强学习深度学习论文

  以下论文均可在https://amundtveit.com/直接下载

Stochastic Neural Networks for Hierarchical Reinforcement Learning

  作者: Carlos Florensa, Yan Duan, Pieter Abbeel

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning

  作者: Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi C

  hen, Yan Duan, John Schulman, Filip De Turck, Pieter Abbeel

Learning Invariant Feature Spaces to Transfer Skills with Reinforcement Learning

  作者: Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, Se

  rgey Levine

Deep Reinforcement Learning for Accelerating the Convergence Rate

  作者: Jie Fu, Zichuan Lin, Danlu Chen, Ritchie Ng, Miao Liu, Nicholas Leonard, Jiashi Feng, Tat-Seng Chua

Generalizing Skills with Semi-Supervised Reinforcement Learning

  作者: Chelsea Finn, Tianhe Yu, Justin Fu, Pieter Abbeel, Sergey Levine

Learning to Perform Physics Experiments via Deep Reinforcement Learning – 作者:Misha Denil, Pulkit Agrawal, Tejas D Kulkarni, Tom Erez, Peter Batta

  glia, Nando de Freitas

Designing Neural Network Architectures using Reinforcement Learning

  作者:Bowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar

Reinforcement Learning with Unsupervised Auxiliary Tasks

  作者: Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,David Silver, Koray Kavukcuoglu

Options Discovery with Budgeted Reinforcement Learning

  作者:Aurelia Lon, Ludovic Denoyer

Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU

  作者:Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons,Jan Kautz

Multi-task learning with deep model based reinforcement learning

  作者:Asier Mujika

Neural Architecture Search with Reinforcement Learning

  作者:: Barret Zoph, Quoc Le

Tuning Recurrent Neural Networks with Reinforcement Learning

  作者:: Natasha Jaques, Shixiang Gu, Richard E. Turner, Douglas Eck

RL^2: Fast Reinforcement Learning via Slow Reinforcement Learning

  作者:Yan Duan, John Schulman, Xi Chen, Peter Bartlett, Ilya Sutskever, Pieter Abbeel

Learning to Repeat: Fine Grained Action Repetition for Deep Reinforcement Learning

  作者:Sahil Sharma, Aravind S. Lakshminarayanan, Balaraman Ravindran

Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening

  作者:Frank S.He, Yang Liu, Alexander G. Schwing, Jian Peng

Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning

  作者: Joshua Achiam, Shankar Sastry

Learning to Compose Words into Sentences with Reinforcement Learning

  作者:Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, Wang Ling

Spatio-Temporal Abstractions in Reinforcement Learning Through Neural Encoding

  作者:Nir Baram, Tom Zahavy, Shie Mannor

Modular Multitask Reinforcement Learning with Policy Sketches

  作者:Jacob Andreas, Dan Klein, Sergey Levine

Combating Deep Reinforcement Learning’s Sisyphean Curse with Intrinsic Fear

  作者:Zachary C. Lipton, Jianfeng Gao, Lihong Li, Jianshu Chen, Li Deng

  (推荐关注)

  ICLR 2017 生成和对抗式生成论文(45篇)

  以下论文均可在https://amundtveit.com/直接下载

Unsupervised Learning Using Generative Adversarial Training And Clustering

  作者: Vittal Premachandran, Alan L. Yuille

Improving Generative Adversarial Networks with Denoising Feature Matching

  作者: David Warde-Farley, Yoshua Bengio

Generative Adversarial Parallelization

  作者: Daniel Jiwoong Im, He Ma, Chris Dongjoo Kim, Graham Taylor

b-GAN: Unified Framework of Generative Adversarial Networks

  作者: Masatosi Uehara, Issei Sato, Masahiro Suzuki, Kotaro Nakayama, Yutaka Matsuo

Generative Adversarial Networks as Variational Training of Energy Based Models

  作者:Shuangfei Zhai, Yu Cheng, Rogerio Feris, Zhongfei Zhang

Boosted Generative Models

  作者: Aditya Grover, Stefano Ermon

Adversarial examples for generative models

  作者: Jernej Kos, Dawn Song

Mode Regularized Generative Adversarial Networks

  作者: Tong Che, Yanran Li, Athul Jacob, Yoshua Bengio, Wenjie Li

Variational Recurrent Adversarial Deep Domain Adaptation

  作者:: Sanjay Purushotham, Wilka Carvalho, Tanachat Nilanon, Yan Liu

Structured Interpretation of Deep Generative Models

  作者: N. Siddharth, Brooks Paige, Alban Desmaison, Jan-Willem van de Meent, Frank Wood, Noah D. Goodman, Pushmeet Kohli, Philip H.S. Torr

Inference and Introspection in Deep Generative Models of Sparse Data

  作者:Rahul G. Krishnan, Matthew Hoffman

Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy

  作者: Dougal J. Sutherland, Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alex Smola, Arthur Gretton

Unsupervised sentence representation learning with adversarial auto-encoder

  作者: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang

Unsupervised Program Induction with Hierarchical Generative Convolutional Neural Networks

  作者: Qucheng Gong, Yuandong Tian, C. Lawrence Zitnick

A Theoretical Framework for Robustness of (Deep) Classifiers against Adversarial Noise

  作者: Beilun Wang, Ji Gao, Yanjun Qi

On the Quantitative Analysis of Decoder-Based Generative Models

  作者: Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, Roger Grosse

Evaluation of Defensive Methods for DNNs against Multiple Adversarial Evasion Models

  作者:Xinyun Chen, Bo Li, Yevgeniy Vorobeychik

Calibrating Energy-based Generative Adversarial Networks

  作者: Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard Hovy, Aaron Courville

Inverse Problems in Computer Vision using Adversarial Imagination Priors

  作者: Hsiao-Yu Fish Tung, Katerina Fragkiadaki

Towards Principled Methods for Training Generative Adversarial Networks作者: Martin Arjovsky, Leon Bottou

Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning

  作者: Dilin Wang, Qiang Liu

Multi-view Generative Adversarial Networks

  作者: Mickaël Chen, Ludovic Denoyer

LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation

  作者: Jianwei Yang, Anitha Kannan, Dhruv Batra, Devi Parikh

Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

  作者: Emily Denton, Sam Gross, Rob Fergus

Generative Adversarial Networks for Image Steganography

  作者: Denis Volkhonskiy, Boris Borisenko, Evgeny Burnaev

Unrolled Generative Adversarial Networks

  作者: Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein

Generative Multi-Adversarial Networks

  作者: Ishan Durugkar, Ian Gemp, Sridhar Mahadevan

Joint Multimodal Learning with Deep Generative Models

  作者: Masahiro Suzuki, Kotaro Nakayama, Yutaka Matsuo

Fast Adaptation in Generative Models with Generative Matching Networks

  作者: Sergey Bartunov, Dmitry P. Vetrov

Adversarially Learned Inference

  作者: Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier Mastropietro, Aaron Courville

Perception Updating Networks: On architectural constraints for interpretable video generative models

  作者: Eder Santana, Jose C Principe

Energy-based Generative Adversarial Networks

  作者:Junbo Zhao, Michael Mathieu, Yann LeCun

Simple Black-Box Adversarial Perturbations for Deep Networks

  作者: Nina Narodytska, Shiva Kasiviswanathan

Learning in Implicit Generative Models

  作者: Shakir Mohamed, Balaji Lakshminarayanan

On Detecting Adversarial Perturbations

  作者: Jan Hendrik Metzen, Tim Genewein, Volker Fischer, Bastian Bischoff

Delving into Transferable Adversarial Examples and Black-box Attacks

  作者: Yanpei Liu, Xinyun Chen, Chang Liu, Dawn Song

Adversarial Feature Learning

  作者:Jeff Donahue, Philipp Krähenbühl, Trevor Darrell

Generative Paragraph Vector

  作者: Ruqing Zhang, Jiafeng Guo, Yanyan Lan, Jun Xu, Xueqi Cheng

Adversarial Machine Learning at Scale

  作者: Alexey Kurakin, Ian J. Goodfellow, Samy Bengio

Adversarial Training Methods for Semi-Supervised Text Classification

  作者: Takeru Miyato, Andrew M. Dai, Ian Goodfellow

Sampling Generative Networks: Notes on a Few Effective Techniques

  作者: Tom White

Adversarial examples in the physical world

  作者: Alexey Kurakin, Ian J. Goodfellow, Samy Bengio

Improving Sampling from Generative Autoencoders with Markov Chains

  作者:Kai Arulkumaran, Antonia Creswell, Anil Anthony Bharath

Neural Photo Editing with Introspective Adversarial Networks

  作者: Andrew Brock, Theodore Lim, J.M. Ritchie, Nick Weston

Learning to Protect Communications with Adversarial Neural Cryptography

作者: Martín Abadi, David G.

  ICLR 2017 -随机/策略梯度论文

  以下论文均可在https://amundtveit.com/直接下载

Improving Policy Gradient by Exploring Under-appreciated Rewards

  作者:: Ofir Nachum, Mohammad Norouzi, Dale Schuurmans

Leveraging Asynchronicity in Gradient Descent for Scalable Deep Learning

  作者:Jeff Daily, Abhinav Vishnu, Charles Siegel

Adding Gradient Noise Improves Learning for Very Deep Networks

  作者:: Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Lukasz Kaiser, Karol Kurach, Ilya Sutskever, James Martens

Inefficiency of stochastic gradient descent with larger mini-batches (and more learners)

  作者: Onkar Bhardwaj, Guojing Cong

Improving Stochastic Gradient Descent with Feedback

  作者: Jayanth Koushik, Hiroaki Hayashi

PGQ: Combining policy gradient and Q-learning

  作者: Brendan O’Donoghue, Remi Munos, Koray Kavukcuoglu, Volodymyr Mnih

SGDR: Stochastic Gradient Descent with Restarts

  作者: Ilya Loshchilov, Frank Hutter

Neural Data Filter for Bootstrapping Stochastic Gradient Descent

  作者: Yang Fan, Fei Tian, Tao Qin, Tie-Yan Liu

Entropy-SGD: Biasing Gradient Descent Into Wide Valleys

  作者: Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun

  (推荐关注)

Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic

  作者: Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E. Turner, Sergey Levine

Batch Policy Gradient Methods for Improving Neural Conversation Models

  作者:Kirthevasan Kandasamy, Yoram Bachrach, Ryota Tomioka, Daniel Tarlow, David Carter

Training Long Short-Term Memory With Sparsified Stochastic Gradient Descent

  作者:: Maohua Zhu, Minsoo Rhu, Jason Clemons, Stephen W. Keckler, Yuan Xie

  (推荐关注)

Parallel Stochastic Gradient Descent with Sound Combiners

  作者: Saeed Maleki, Madanlal Musuvathi, Todd Mytkowicz, Yufei Ding

Gradients of Counterfactuals

  作者: Mukund Sundararajan, Ankur Taly, Qiqi Yan

  ICLR 2017 — RNN深度学习论文

  论文均可在https://amundtveit.com/直接下载

  (因微信字数限制,请移步https://amundtveit.com/查看更多,网站可直接下载论文

  :COO、执行总编、主编、高级编译、主笔、运营总监、客户经理、咨询总监、行政助理等 9 大岗位全面开放。

  简历投递:j[email protected]

  HR 微信:13552313024

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容