所以硬件创业者们,classification/inference 的年代早已随岁月顺水流,未来的硬件的机遇已经超越了理解人类的范畴。这将是一个机器能与人沟通的年代。以综合(synthesis)为目标的人工智能硬件正向我们走来。 Savable 从头开始,你就输了 总是改变生态的 G 家大神总在你意想不到的给大家送福利。比如正式出版的 Tensorflow 1.0 提供了不少基于图片识别的预训练(pre-trained)网络,基于 Inception 结构。对于很多智能开发者而言,只需要根据实际情况,对最后一到两层的全链接(Fully connected layer)训练下,就能达到玩美智能的效果。高效、省时、省力、省硬件。 同样的故事发生在 Baidu 和 Amazon 的语音识别系统中。大家不约而同的发现,对于不同语言的识别系统,其实只要训练输出层(output layer)就能得到相近的结果。而省去 RNN/CNN 层训练就好像是时间的馈赠,来自上天的礼物。
Reference: N. Storm, Amazon Alexa Talk 这样的馈赠何尝只是算法层面的专属?首先,可节省(savable)的实现方法让硬件在合理安排存储空间和可配置维度上带来的新的启示。同时,若硬件的可重复使用率提升到了新的高度,那将对云端/终端的 AI 计算资源配置比关系提出一轮新的思考与挑战。其次,面向成熟体系框架 framework 的硬件,对于客户和使用者来说,本身就是一种节省。如果有合适的 scalable 接口和 complier,在 inference 端的映射也将朝向更简约、更低门槛的方式前进。只有充分体会到这一点,完善与框架的接口的设计,才终将改变 AI 硬件的大潮流。 总结:感谢 AI frontier,让小编能从一个更宏观的角度去仰视人工智能算法的大趋势,也凝练四大智能硬件的重要关键——Scalable,Sensable, Synthesizable and Savable。最后,预祝第二届 AI Frontier 顺利召开。 ©本文为机器之心专栏文章,转载请联系本公众号获得授权。 ?------------------------------------------------ 加入机器之心(全职记者/实习生):[email protected] 投稿或寻求报道:[email protected] 广告&商务合作:[email protected] ,开奖 (责任编辑:本港台直播) |