答:在过去几年中,计算机视觉已经发展得相当成熟了。最近,大数据集和高效算法也发布了许多,它们能帮助在物理环境中进行对话的研究。即时应用能成为客户服务的自然延展,它能使用机器视觉进行错误排查。 我相信会话代理的下一步将是能够通过视觉获得文本信息,从而减少向用户询问的问题数量以达到更高效。 PHILIP BACHMAN(高级研究科学家) 问:无监督学习哪些方向是很有前途的? 答:无监督学习是一种在没有外部标记或监督的方式下帮助模型「理解」数据(图像、文本、视频等)的方式。以前的工作主要集中在这些模型的最终输出,而模型的内部运行方式如何合作产生输出的过程经常被人忽视。最近的研究发展让我们可以解释模型的内部行为。如,我们现在可以激活某些特征去表征图像对象的类型,而其他一些可以表征它的地理位置,或者激活某些特征来表征电影评论的情感分析,而其他特征表征其类型。这些技术使我们离学习目标越来越近,即表征和推断更高层次的概念,并解释模型看到了什么。为更广泛的模型与任务提供这个能力将大量增加无监督学习的实际价值。 问:使用无监督学习进行自然语言理解的核心挑战是什么? 答:模型能抽取压缩的表征将会是很大的进步,因为它揭示了自然语言文本的语义内容。理解自然语言的主要困难就是可以用很多不同的方式表达一个想法。而通常,我们想从一些文本中提取的是一个表示意图,即驱使某人写下该文本的目的和该文本传递的意思。很多情况下,用于表达想法的特定词语和语法除了我们需要的还包含了许多信息。将关于意图和想法的信息与文本呈现出的表面形式分离是当前模型的主要挑战。无监督学习技术将通过挖掘内容和形式的因式表征来克服这种信噪比问题(signal-to-noise problem),这将是一个巨大的进步。 ALESSANDRO SORDONI(研究科学家) 问:你认为 2017 年人工智能的主要进步将会是什么? 答:当前活跃的研究领域是元学习(meta-learning)支持算法的开发。元学习算法(meta-learning algorithms)不仅在特定任务上表现良好,同时它被设计成能够发掘学习本身的基本规则。所以相同的算法可以利用推断的规则解决其他相关但之前没见过的问题。当然,这是人工智能的一个开放性问题,仍然需要做很多研究。 问:这将对会话代理(conversational agents)有什么帮助? 答:要让会话代理真正起作用,它们就应该具备信息搜寻能力。想象一下,让一个代理学习去询问和搜寻进行用户参数选择的信息:这个策略将促进对话体验的个性化和随后用户参与度的增加。在这个意义上,atv直播,学习如何通过提问从用户那里获取信息是一种元学习的形式,这将测试哪些问题单个用户同样给其他用户提供有用的信息。当然,代理不应该经常询问用户,他应该自己去搜寻有用的信息。 原文网址: ©本文由机器之心编译,转载请联系本公众号获得授权。 ?------------------------------------------------ 加入机器之心(全职记者/实习生):[email protected] 投稿或寻求报道:[email protected] 广告&商务合作:[email protected] (责任编辑:本港台直播) |