1899年,爱迪生听福特介绍完汽车之后表示:马的末日已经来临。不过汽车在大街上畅通无阻奔驰之前,还是遇到了很大的阻力。当时乘坐马车的人不喜欢汽车,马车夫和马车铺老板更是恨透了汽车。在英国甚至有一个交通法规叫“红旗法”(1858-1896年),蒸汽汽车市内限速2英里/小时以下,郊外限速4英里/小时以下。旧金山也曾规定汽车在市内行驶的速度不能超过8英里/小时。对汽车的歧视不仅包括汽车不能超过马车速度,还有马车与汽车相遇时,汽车要停车为马车让路,马车夫甚至可以要求汽车司机发动机熄火,让马车安静通过。 但不管什么法令,汽车最终还是取代了马车,成为20世纪以来人类最主要的交通工具之一。人工智能对未来各种职业变化产生的影响,只会更加彻底。人工智能代表了更高的生产力,不管行业工会和政策如何压制,最终它还是会胜出。 那么,如何看待人工智能近期的加速?人工智能的变化对哪类职业会产生影响? 一、机器学习范式的转变 人工智能之所以变热、加速,很重要的原因是机器学习取得了重大的突破,而这个突破在于思考问题方式的转变。比如深度学习不再试图对整个世界建模,而是对大脑进行建模。范式的转移带来全新的突破。这加速了生产力的提升,加速了职业的变化,有的职业将消失,甚至绝大多数目前的职业都将消失,atv,而新的职业将诞生。 从1956年提出人工智能概念到2016年,刚好60年,人工智能走到突破点上。人工智能的三驾马车:算法、算力和数据。算法有了很大的进步,深度学习技术可以大量处理未标记非结构化的数据,可以无监督训练及有监督的反向支持运算等;算力方面,GPU的大发展为人工智能的计算速度提供了基础支持。而数据是所有人工智能之源。所有的决策,所有的行为,最终归结为数据。 从具体的发展来看,目前语音识别、图像识别、自然语言处理、自动驾驶都有了实实在在的长足进步。 首先图像识别正确率的提高,图像识别的错误率减少到了7%,语音识别错误率减少到4%。图像识别相当机器的眼睛,它通过图像识别能够看到世界。在人工智能基准测试Imagenet上,微软、谷歌和百度都曾经取得过5%以内的识别错误率,这是一个很了不起的成绩,因为人眼识别的错误率大概为5.1%。其次,语音识别率大大幅提高。在国内百度、搜狗和科大讯飞对外公布语音识别准确率均达到97%。 更重要的是机器学习的方法让它变得越来越犀利。之前人工智能靠的是穷举法。比如图像识别要靠通过设立规则开发系统来识别物体,比如猫、狗等动物。自然语言处理则需要通过语言学家们把语法规则编写出来,并设计程序开发来完成。机器学习则换一个模式解决这个问题。把规则问题转换为数据问题。比如说,让要机器学习“猫”,传统的方式把识别的规则写出来。而机器学习则让自己去学习:从一定数量的标记为“猫”的图片和没有标记为“猫”的图片中,让神经网络去把“猫”找出来。之前由于算力和数据没有办法解决学习问题,但今天,这都不是问题。 数据对规则形成了碾压。甚至人工智能学家宣称:“每解雇一名语言学家,语音识别机器的表现就提高了一点。” 由于这是一个通用的方法论,这样机器学习就可应用到所有数据的领域,比如金融科技,通过机器学习找到高风险人群的特征。 机器学习,尤其是深度学习的快速发展让很多工作面临被取代的局面,这个进程还在加快。更可怕的是,未来人工智能将在数据分析上比人类更聪明。这也意味着人类不仅仅在一些机械的工作上被取代,甚至一些复杂的计算工作也会被取代。 容易被取代的工作包括纯机械体力劳动、有明确方法论和逻辑及流程的职业。难以被取代的工作,主要是关于人的体验、感性、暂时没有明确方法论和流程可以解决的行业和职业。比如创意娱乐艺术类。 未来可能今天的绝大多数职业都要消失,这里也没有办法穷举。目前看来显而易见的一些行业和职业很快就要受到冲击。 1.翻译 谷歌神经网络翻译(Neural Machine Translation)从2014年开始,仅仅两年的时间,就发生了翻天覆地的变化,英语和法语,英语和西班牙的互译质量达到了90%以上。百度翻译采用的则是深度学习和统计结合的翻译系统,同时还加收入了语言处理、语音交互的场景,目前支持超过28种语言互译。微软也曾发布微软翻译(Microsoft Translator),实现9中语言实时语音转文本的翻译。 (责任编辑:本港台直播) |