本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

总结 | 2016年最值得读的自然语言处理领域Paper

时间:2017-01-03 17:11来源:报码现场 作者:www.wzatv.cc 点击:
经过大家的投票和补充,paperweekly选出了15篇2016年最值得读的自然语言处理领域相关Paper,排序按照时间顺序,覆盖了几大热门研究方向。 1、Learning to Compose Neural Networks for Question Ans

  经过大家的投票和补充,paperweekly选出了15篇2016年值得读的自然语言处理领域相关Paper,排序按照时间顺序,覆盖了几大热门研究方向。

  1、Learning to Compose Neural Networks for Question Answering作者

  Jacob Andreas, Marcus Rohrbach, Trevor Darrell, Dan Klein

  单位

  Department of Electrical Engineering and Computer Sciences

  University of California, Berkeley

  关键词

  Question Answering

  2、Text understanding with the attention sum reader network作者

  Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, Jan Kleindienst

  单位

  IBM Watson

  关键词

  Machine Reading Comprehension

  3、Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning作者

  Karthik Narasimhan, Adam Yala, Regina Barzilay

  单位

  CSAIL, MIT

  关键词

  Information Extraction; Reinforcement Learning

  4、Pointing the Unknown Words作者

  Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, Yoshua Bengio

  单位

  Universite de Montr´eal

  IBM T.J. Watson Research

  CIFAR Senior Fellow

  关键词

  Unknown Words

  5、Sequence-to-Sequence Learning as Beam-Search Optimization作者

  Sam Wiseman, Alexander M. Rush

  单位

  School of Engineering and Applied Sciences, Harvard University

  关键词

  Seq2Seq; Beam Search

  6、SQuAD: 100,000+ Questions for Machine Comprehension of Text作者

  Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, Percy Liang

  单位

  Computer Science Department

  Stanford University

  关键词

  Machine Reading Comprehension; Dataset

  7、End-to-End Reinforcement Learning of Dialogue Agents for Information Access作者

  Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao, Yun-Nung Chen, Faisal Ahmed, Li Deng

  单位

  School of Computer Science, Carnegie Mellon University

  Microsoft Research

  National Taiwan University

  关键词

  Reinforcement Learning; Dialogue System

  8、ReasoNet: Learning to Stop Reading in Machine Comprehension作者

  Yelong Shen, Po-Sen Huang, Jianfeng Gao, Weizhu Chen

  单位

  Microsoft Research Redmond

  关键词

  Machine Reading Comprehension

  9、Personalizing a Dialogue System with Transfer Learning作者

  Kaixiang Mo, Shuangyin Li, Yu Zhang, Jiajun Li, Qiang Yang

  单位

  The Hong Kong University of Science and Technology

  关键词

  Dialogue System; Transfer Learning

  10、LightRNN Memory and Computation-Efficient Recurrent Neural Network作者

  Xiang Li, Tao Qin, Jian Yang, Tie-Yan Liu

  单位

  Nanjing University of Science and Technology

  Microsoft Research Asia

  关键词

  New Recurrent Neural Network

  11、Dual Learning for Machine Translation

  作者

  Yingce Xia, Di He, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, Wei-Ying Ma

  单位

  University of Science and Technology of China

  Key Laboratory of Machine Perception (MOE), School of EECS, Peking University

  Microsoft Research

  关键词

  Dual Learning; Neural Machine Translation

  12、Neural Machine Translation with Reconstruction作者

  Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu, Hang Li

  单位

  Noah’s Ark Lab, Huawei Technologies

  Department of Computer Science and Technology, Tsinghua University

  关键词

  Neural Machine Translation

  13、Linguistically Regularized LSTMs for Sentiment Classification作者

  Qiao Qian, Minlie Huang, Xiaoyan Zhu

  单位

  State Key Lab. of Intelligent Technology and Systems, National Lab. for Information Science and Technology

  Dept. of Computer Science and Technology, Tsinghua University

  关键词

  Sentiment Classification; LSTM

  14、Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation作者

  Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, Macduff Hughes, Jeffrey Dean

  单位

  Google

  关键词

  Multilingual Neural Machine Translation; Zero-Shot

  15、Language Modeling with Gated Convolutional Networks作者

  Yann N. Dauphin, Angela Fan, Michael Auli, David Grangier

  单位

  Facebook AI Research

  关键词

  Language Modeling; Gated CNN

  如果您觉得还有非常不错的NLP Paper没有出现在这个list中,请留言或移步到此处进行补充或评论

  下载所有Paper请戳这里

  关于PaperWeekly

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容