本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

报码:开源深度学习平台 TensorFlow、Caffe、MXNet……哪个最适合你(3)

时间:2016-11-30 17:01来源:本港台直播 作者:118开奖 点击:
一方面,使用 MXNet 构建网络比用 Keras 需要花更多功夫。由于教程少,学习的难度更大。 但是,MXNet 支持超过 7 种不同的语言的优势弥补了这一点,这些语

  一方面,使用 MXNet 构建网络比用 Keras 需要花更多功夫。由于教程少,学习的难度更大。但是,MXNet 支持超过 7 种不同的语言的优势弥补了这一点,这些语言包括 C++、Python、R、Javascrip,甚至 Matlab。

  MXNet 的另一个明显的优势是支持分布式计算。这意味着如果你需要在多个 CPU 或 GPU 上训练模型以提高速度,MXNet 是很好的选择。

  可扩展性也可能是亚马逊被 MXNet 吸引最大的原因。Vogels 使用 Inception v3 图像分析算法分析了 MXNet 训练吞吐量的基准,声称通过在多个 GPU 上运行它获得的加速是是呈高度线性的——在128个GPU上,MXNet 的运行速度比在单个 GPU 上快109倍。

  许可

  上述开源项目的另一区别在于其许可协议:Theano、Torch 和 Caffe 采用 BSD 许可协议,未能解决专利和专利争端问题。Deeplearning4j 和 ND4J 采用 Apache 2.0 许可协议发布。该协议包含专利授权和防止报复性诉讼的条款,也就是说,任何人都可以自由使用遵循 Apache 2.0 协议的代码创作衍生作品并为其申请专利,但如果对他人提起针对原始代码(此处即 DL4J)的专利权诉讼,就会立即丧失对代码的一切专利权。(换言之,这帮助你在诉讼中进行自我防卫,同时阻止你攻击他人。)BSD 一般不能解决这个问题。

  速度

  Deeplearning4j 依靠 ND4J 进行基础的线性代数运算,事实表明其处理大矩阵乘法的速度至少是 NumPy 的两倍。这正是 DL4J 被 NASA 的喷气推进实验室所采用的原因之一。此外,Deeplearning4j 为多芯片运行而优化,支持采用 CUDA C 的 x86 和 GPU。

  虽然 Torch7 和 DL4J 都采用并行运行,DL4J 的并行运行是自动化的。我们实现了从节点(worker nodes)和连接的自动化设置,让用户在 Spark、Hadoop 或 Akka 和 AWS 环境中建立大型并行网络时可以绕过学习库。Deeplearning4j 最适合快速解决具体问题。

  DL4J:为什么用Java?

  经常有人问我们,既然有如此之多的深度学习用户都专注于 Python,为什么还选择 Java 来实施开源深度学习项目。的确,Python 有着优越的语法要素,可以直接将矩阵相加,而无需像Java那样先创建显式类。Python 还有由 Theano、NumPy 等原生扩展组成的广泛的科学计算环境。

  但 Java 也具备不少优点。首先,Java 语言从根本上看要快于 Python。如不考虑依赖用Cython 加速的情况,任何用 Python 写成的代码在根本上速度都相对较慢。不可否认,运算量最大的运算都是用 C 或 C++ 语言编写的。(此处所说的运算也包括高级机器学习流程中涉及的字符和其他任务。)大多数最初用 Python 编写的深度学习项目在用于生产时都必须重新编写。Deeplearning4j 依靠 JavaCPP 从 Java 中调用预编译的本地 C++ 代码,大幅提升定型速度。

  其次,大型企业主要使用 Java 或基于 JVM 的系统。在企业界,Java 依然是应用范围最广的语言。Java 是 Hadoop、Hive、Lucene 和 Pig 的语言,而它们恰好都是解决机器学习问题的有用工具。也就是说,深度学习本可以帮助许多需要解决现实问题的程序员,但他们却被语言屏障阻碍。我们希望提高深度学习对于这一广大群体的可用性,这些新的用户可以将深度学习直接付诸实用。

  第三,为了解决 Java 缺少强大的科学计算库的问题,我们编写了 ND4J。ND4J 在分布式CPU 或 GPU 上运行,可以通过 Java 或 Scala 的 API 进行对接。

  最后,Java 是一种安全的网络语言,本质上具有跨平台的特点,可在 Linux 服务器、Windows 和 OSX 桌面、安卓手机上运行,还可通过嵌入式 Java 在物联网的低内存传感器上运行。Torch 和 Pylearn2 通过 C++ 进行优化,优化和维护因而存在困难,而 Java 则是“一次编写,随处运行”的语言,适合需要在多个平台上使用深度学习系统的企业。

  DL4J:生态系统

  生态系统也是为 Java 增添人气的优势之一。Hadoop 是用 Java 实施的;Spark 在Hadoop 的 Yarn 运行时中运行;Akka 等开发库让我们能够为 Deeplearning4j 开发分布式系统。总之,对几乎所有应用而言,Java 的基础架构都经过反复测试,用 Java 编写的深度学习网络可以靠近数据,方便广大程序员的工作。Deeplearning4j 可以作为 YARN 的应用来运行和预配。

  Scala、Clojure、Python 和 Ruby 等其他通行的语言也可以原生支持 Java。我们选择Java,也是为了尽可能多地覆盖主要的程序员群体。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容