1930年代末,柯尔莫哥洛夫发展了平稳随机过程理论,美国数学家维纳(N. Wiener,1894-1964)稍后获得了同样的结果。柯尔莫哥洛夫还把研究领域拓广到行星运动和空气的湍流理论。 柯尔莫哥洛夫做出重要贡献的湍流 1940年代,柯尔莫哥洛夫的兴趣转向应用方面。1941年,他发表了湍流方面的两篇具有重要意义的论文,成了湍流理论历史上最重要的贡献之一。柯尔莫哥洛夫所得到的一个著名结果是"三分之二律":在湍流中,距离为r的两点的速度差的平方平均与成正比。 这个时期,除了数学,柯尔莫哥洛夫在遗传学、弹道学、气象学、金属结晶学等方面均有重要贡献。在1940年发表的一篇论文里,柯尔莫哥洛夫证明了李森科(T. D. Lysenko,1898-1976)的追随者们所收集的材料恰恰是支持孟德尔定律的。当时,孟德尔定律在苏联是受批判的,柯尔莫哥洛夫的论文反映了他追求真理的科学精神。 1950年代,是柯尔莫哥洛夫学术生涯的第三个创造高峰期。这个时期的研究领域包括经典力学、遍历理论、函数论、信息论、算法理论等。 1953和1954年,柯尔莫哥洛夫发表了两篇动力系统及其在哈密顿动力学中的应用方面的论文,标志着KAM(即Kolmogorov-Arnold-Moser)理论的肇始。1954年,柯尔莫哥洛夫应邀在阿姆斯特丹国际数学家大会上作了"动力系统的一般理论与经典力学"的重要报告。后来的研究证明了他深刻的洞察力。 这个时期,柯尔莫哥洛夫还开始了自动机理论和算法理论的研究。他和学生乌斯宾斯基(V. A. Uspenskii)建立了今称"柯尔莫哥洛夫-乌斯宾斯基机"的重要概念。他还力排反对意见,支持计算理论的研究。许多苏联的计算机科学家都是柯尔莫哥洛夫的学生或学生的学生。1950年代中后期,柯尔莫哥洛夫致力于信息论和动力系统遍历论的研究。他在动力系统理论中引入了熵的重要概念,开辟了一个广阔的新领域,后来还导致混沌理论的诞生。1958-1959年,柯尔莫哥洛夫将遍历理论应用于一类湍流现象,对后来的工作产生了深远影响。 1957年,柯尔莫哥洛夫和学生阿诺尔德完全解决了希尔伯特第13问题:存在连续的三元函数,不能表成二元连续函数的叠合。答案是否定的:任意多个变量的连续函数都可表成单变量连续函数的叠合。 1960年代以后,柯尔莫哥洛夫又开创了演算信息论(今称"柯尔莫哥洛夫复杂性理论")和演算概率论这两个数学分支。 柯尔莫哥洛夫的研究几乎遍及数论之外的一切数学领域。1963年,在第比利斯召开的概率统计会议上,美国统计学家沃尔夫维茨(J. Wolfowitz,1910-1981)说:“我来苏联的一个特别的目的是确定柯尔莫哥洛夫到底是一个人呢,还是一个研究机构。” 独特的教学研究方式 在半个多世纪的漫长学术生涯里,柯尔莫哥洛夫不断提出新问题、构建新思想、创造新方法,在世界数学舞台上保持着历久不衰的生命力,这部分得益于他健康的体魄。他酷爱体育锻炼,被人称作"户外数学家"。他和亚历山德罗夫每周有四天时间在科马洛夫卡度过(另外三天则住在城里的学校公寓里)。其中有一整天是体育锻炼的时间:滑雪、划船、徒步行走(平均路程长达30公里)。在晴朗的三月天,他们常常穿着滑雪鞋和短裤,连续四小时在外锻炼。平日里,j2直播,早晨的锻炼是不间断的,冬天还要再跑10公里。当河冰融化的时候,他们还喜欢下水游泳。在柯尔莫哥洛夫70岁生日庆祝会期间,组织了一次滑雪旅行,柯尔莫哥洛夫穿着短裤,光着膀子,老当益壮,把别的参加者都甩在了后面! 他的许多奇妙而关键的思想往往是在林间漫步、湖中畅游、山坡滑雪的时候诞生的。1962年访问印度时,他甚至建议印度所有的大学和研究所都建在海岸线上,以便师生在开始严肃讨论前可以先游泳。 柯尔莫哥洛夫也是一位著名的数学教育家,他对于为有数学天赋的学生提供特殊教育的计划有特别的兴趣。他认为,一些家长和教师企图从10~12岁左右的学生中挖掘有数学才能的孩子,这样做会害了孩子。但到了14~16岁,情况发生变化。这个年龄段的孩子对于数学有无兴趣通常明显地表现出来。其中约有一半的学生断定数学物理对他们并无多大用处,这些学生应该学习特殊的简化课程。另一半学生的数学教育就可以更有效地进行。而这些学生在选择数学作为大学专业时,还应测验一下自己对于数学的适应性--运算能力、几何直观能力、逻辑推理能力。 (责任编辑:本港台直播) |