最近,科学家们用机器加速和大量的学习数据,在神经网络(又名深度学习)领域做了几项突破,这导致了机器学习领域的飞速发展。首先,一些深度学习方法,比如卷积神经网络(CNN)可以在没有明确的、延迟的特征工程或是人类设计的情况下,在学习过程中自动习得这些特征。这大概是深度学习对AI领域做出的最大的贡献了。 回到我们从声调中识别情绪的系统中来,我们做的是用一个简单的卷积神经网络替换特征工程和分类学习,它可以学得很好(即使不比分类机器学习好,但是要比它快很多),因为它不需要明确且缓慢的特征工程过程。类似地,面部识别也可以通过卷积神经网络来实现。 另外,科学家们也在研发让机器人通过改变音高,和小发动机控制合成的面部肌肉表达情感的方式。Sofia和Erica就是两个有面部表情的人形机器人。 人和机器人之间的联系与第四次工业革命 第四次工业革命就在眼前了。技术已经在很多领域取代了人们的地位。以前需要花费很多年,甚至几十年才能学成的技术,如今在一夜间已经过时了。目前,很多人都没有意识到AI和机器人领域进步的速度,并且以他们当下目睹的情况,推测机器人会在三十年到五十年内统治世界。这种机器人威胁论近来被炒得很热,很多人对机器人的存在诚惶诚恐。 实际上,这种预测在前几次工业革命中就已经存在了,那时候人们担心蒸汽机和计算机会让人类的劳作显得多余。但众所周知的是,人类一直都在学各种不同的技术来操纵这些机器。 然而,随着更多的AI和机器人的运用,人和机器人之间的新关系会出现。对人类而言,想要减少恐惧,去相信一个能走、能说、能做出各种姿势、能负重的机器人,我们需要做到的是,直播,与机器人实现情感的互通。将机器人和其他电子设备区分开的是它先进的机械智能以及情绪。对家庭护理机器人而言,理解婴儿的哭声,或是病人痛苦的呻吟非常重要。对那些智能的机器人而言,它们需要“走心”。 那么,机器人到底会不会拥有自我意识呢? 如果一个机器人拥有了分析技术、学习能力、沟通能力,甚至是情绪,它们会有自我意识吗?它们会有感知能力吗?它们会做梦吗? 上文提到的神经网络不像其他的机器人学习算法那样,会让人类更确定自己才是主宰者。神经网络甚至可以产生一些随机的,像梦境一般的图像,让人们相信机器人是可以做梦的。 问题是,作为人类的我们自己明白是什么让我们拥有感知能力吗?它是不是只是感官理解和思考过程的结合?AI科学家们无法回答这个问题,但是我们相信,要打造好的机器人,我们需要将那些符合伦理道德规定的价值观传递给它们,这些价值规范能帮助它们做出决定。有了机器人智能领域的相关拓展,将这些价值观教授到机器人会变得和教育儿童一样重要。目前,我们的下一个挑战是,在机器人有了先决的情绪理解和沟通技巧后,让机器自动学习这样的价值观。 (责任编辑:本港台直播) |