Ian Goodfellow:我从朋友的送别聚会出来回到家的时候大概半夜,然后花了一晚上写出来。事后想起来的时候觉得特别幸运,第一个版本就成了,不用调超参数什么的。 吴恩达:我从别的地方听到一个传闻说,你有一次接近死亡的经历,而且它让你对 AI 的投入更坚定了,能给我讲讲吗? Ian Goodfellow:嗯,其实不是真的快要死掉,但是觉得自己很可能会死,那时候头特别疼,有几位医生说我可能有脑出血。所以就做了MRI来确定到底有没有脑出血,在等MRI结果的时候我就意识到,那时候我大多数的念头都是想让别的人能够试试我的研究想法,其实很多想法都挺傻的,不过那时候我意识到,我生命中最大的财富之一其实就来自于自己进行更多的研究。 吴恩达:啊,所以当你觉得你快要死去的时候,开奖,你心里想的是要把研究做完。这种决心真的让人觉得震撼。然后,现在你仍然参与很多GANs的研究,那么你觉得GANs的未来如何? Ian Goodfellow:现在GANs可以用来做很多不同的事情,比如在监督学习中,给其它的模型生成训练数据,甚至模拟科学实验。根本上来说,这些事情都可以用其他的生成式模型完成,所以我觉得GANs现在在一个重要的交叉路口面前,目前的GANs有时候效果很好,但是真的要发挥出GANs的厉害之处就靠的不都是科学,更像是一种艺术。这就跟十年前人们对深度学习的总体感觉一样,那时候我们用的是基于玻尔兹曼机的深度信念网络,它们特别特别难处理。后来我们逐渐换成了ReLU、Batch Normalization之后,深度学习就变得可靠多了。如果我们能够让GANs变得像深度学习这样可靠的话,那我觉得现在使用GANs的场景,以后也还会继续用GANs,而且能够达到更好的效果。但是如果我们解决不了GANs的稳定性的问题的话,它在历史上留下的贡献就只是多展示了一种构建生成式模型的方法,然后最终还是会被其它形式的生成式模型取代。所以我现在的所有时间里大概有40%都是用在研究如何让GANs更稳定上的。 吴恩达:不错。有很多人加入深度学习界已经10年了,比如你就是,而且现在还是先行者之一。也许现在加入GANs的研究的人假如能够搞定它的话,也会是未来的先行者。 Ian Goodfellow:对,很多人已经是GANs的早期先行者,当我们梳理历史上对GANs的发展做出贡献的人的时候,也不能漏了别的研究小组,比如Facebook、伯克利等等,他们也做出了很多贡献。 吴恩达:除了你自己的研究之外,你也是「Deep Learning」这本书的作者之一,跟我讲讲吧。 Ian Goodfellow:这本书是我和Yoshua Bengio、Aaron Courville合著的,Aaron是我的博士生导师。这是关于现代深度学习的第一本教科书,英文版和中文版都很受欢迎,两种语言的加起来应该已经卖出7万本了。我也收到了很多学生的反馈,说看书以后有很大的收获。我们的书和其它的书有一点不一样,我们在开头专门有一章讲深度学习里需要用到的数学知识。我从你在斯坦福教授的课程里学感受到线性代数和概率论是非常重要的,就是,人们对机器学习算法很感兴趣,但是如果想做一个优秀的实践者的话,就需要先掌握算法背后的基础数学原理才行。所以我们就在一开始集中介绍所需的数学知识,这样就不用学会全部的线性代数知识,但是可以很快学会深度学习最常用的那些线性代数知识。 吴恩达:所以对数学感到头痛的、有段时间没看过数学的人,就可以从数的开头学到这些背景知识,然后进入深度学习的部分。 Ian Goodfellow:里面有所有有必要知道的知识和公理,然后还是要很花一些功夫练习,才能把它们用好。对于真的不喜欢数学的人,应该还是会比较痛苦的。但是对于愿意学习、有信心掌握的人,所有需要用到的数学工具都在这里了。 吴恩达:作为深度学习领域的长期研究者,你觉得这些年里人工智能和深度学习的发展趋势如何? Ian Goodfellow:10年前的时候,整个研究大家庭里最大的问题是如何运用深度学习的方法解决人工智能相关的问题。那时候我们用厉害的工具解决简单的问题,比如如何从手工提取的特征中识别模式,人类设计师要做其中的很多工作,创建那些特征然后输入到电脑里。这样的方法对预测广告点击、各种基本科学分析之类的任务很好使,但是花了非常多的精力才能让它处理上百万像素的图像、音频波形之类的,因为这样的系统是完全从零开发出来的,差不多解决这些问题也就是5年前的事。现在我们遇到的问题是,面前的方法太多了,对于一个想要进入 AI 领域的人来说,最大的问题是选择到底从事哪个方向,是想要把强化学习提升到监督学习的水平还是想要把无监督学习提升到监督学习的水平,是想要保证机器学习算法能够保证公平、不要表现出人类想要避免的偏见,还是想要解决 AI 带来的社会问题来保证 AI 能够让每个人都受益而不是造成剥削和失业。现在真的是一个很精彩的时刻,有很多不同的事情可以做,我们既需要避开 AI 带来的问题,也要尽可能发挥 AI 的长处。 吴恩达:现在有很多人想要加入到人工智能的潮流中来,你有什么建议给他们吗? (责任编辑:本港台直播) |