【新智元导读】本文介绍了科学家爱终于研发棋牌类AI的原因,开奖,把常见的游戏AI分为“完全信息类”和“非完全信息类”,并且针对其难度打分,最难的竟是“星际争霸”和“我的世界”! 为什么在人工智能领域,科学家总是热衷于让AI跟人类下棋,玩游戏?从简单的跳棋、五子棋,到更加复杂的中国象棋、国际象棋,以及最近非常热门的围棋和德州扑克。每次AI在某个智力游戏上成功地击败人类选手,便会让大家唏嘘不已,慨叹AI会在不久的将来取代人类… 幸运的是,AI接手地球还并未发生。我们不仅不需要如此杞人忧天,而且还会欣喜地发现人工智能的技术进步给生活带来了更多便利。一个会下棋的AI也并非科学家的终极目标,其更积极的意义在于,AI算法在研究棋艺的过程中不断精进和提升,会带来更多设计上的创新,从而在根本上提升人工智能算法的能力和适用范围。 而科学家之所以乐于选择棋类游戏,一方面是因为它们自古以来就被认为是人类智力活动的象征,模拟人类活动的AI自然要以此为目标。成功达到人类甚至高于人类水平,可以吸引更多人关注并投身于人工智能的研究和应用中来。 另一方面,棋类也很适合作为新的AI算法的标杆(Benchmark)。棋类游戏的规则简洁明了,输赢都在盘面,适合计算机来求解。理论上只要在计算能力和算法上有新的突破,任何新的棋类游戏都有可能得到攻克。 除了棋类游戏,牌类游戏(比如德州扑克、桥牌、麻将、斗地主等)也逐渐成为人工智能研究的新方向。而在更加大型的电子游戏方面,比如星际争霸、我的世界(Minecraft),科学家也开始了新一轮的AI算法的创新。这些不同的游戏在研究人员的眼里究竟有什么区别?这些研究成果对我们的生活又有什么意义呢?下面我们就为大家扒一扒这两个问题。 棋牌类AI家族 了解棋牌类AI,我们可以先从它的分类讲起。这一家族按照牌面“坦诚”度的不同,可以分为两支脉络:一支擅长“打开天窗说亮话”,另一支则是“猜测推理”的智能高手。 国际象棋、围棋等盘面信息都是公开的,对弈双方接收到的信息完全相同,因此也被称为“完全信息类”的AI博弈;而德州扑克、桥牌、麻将等游戏,每个人无法看到对手手里的牌,所以称之为“非完全信息类”的AI博弈。
完全信息类——看得到我就算得出 顾名思义,即棋面信息大家都可看到,博弈双方接收到的信息是完全对等的,如国际象棋和围棋。此类博弈中,AI每次只需要根据当前盘面,搜索计算以后各种情况下自己的胜率。为了提高搜索效率,一般需要对搜索过程中产生的“博弈树”进行广度和深度剪枝。就是我们平常下棋时常说的算多远和算多准。为了算得远,我们一般需要让AI少看对手和自己不太可能走的地方,称之为策略函数。为了算的准,我们需要更加准确地评估多步后的盘面自己的胜率,称之为价值函数。找到了合适的函数,再加上计算机的强大计算力,让AI达到或超过人类成为可能。在博弈树和策略价值函数的选择上,“完全信息类”棋类AI算法经历了从“AlphaBeta剪枝算法”、“蒙特卡洛树搜索”到“深层神经网络”的迭代更新,功能也不断“进化”。 跳棋、五子棋 | 难度指数★ 跳棋和五子棋的空间复杂度较低。甚至在不需要对博弈树剪枝的情况下,计算机凭借强大的计算能力便可以计算所有盘面的可能。所以在这种相对简单的棋类游戏中,人类已经不存在战胜AI的可能。 中国象棋、国际象棋 | 难度指数★★★ 象棋的空间复杂度较高,暴力求解的方法并不可行。但是相对而言容易找到适合的价值函数。以国际象棋为例,可以根据棋盘上残留棋子的类型和位置给出一个大致的评分。比如,棋盘上如还有皇后加10分,有车加5分,有马加3分,以此为基础计算函数。为了提高效率,国际象棋还有巨大的开局和终局数据库来保证残局计算的准确度。依靠这些规则,1997年“深蓝”第一次战胜了人类国际象棋冠军。其后,电脑象棋程序甚至可以在PC上运行并击败顶级人类选手。 围棋 | 难度指数 ★★★★ (责任编辑:本港台直播) |