如今,摩尔定律是否能够适应如今崭新的计算架构?摩尔定律是以蓝线表示,有一个难以突破的平台期。主要难点之一在于,线程做的比较小会有很大的挑战。但是deep learning 还在不断发展,因此需要全新的架构支持,并且需要沿着比摩尔定律更高的计算量趋势发展,才能匹配全新的计算模式,才能在 AI 时代体现良好的计算能力。
我们预计到 2025年,GPU 有很大的需求量。GPU 时代兴起的原因在于,GPU 提供了与之前 general purpose computing 不同的模式。我们可以看到,在屏幕左边,底层是CUDA,上面是系统,算法和应用。GPU 在支撑全新架构的前提下,能够支撑现有的计算力。
我们可以对 CPU 与 GPU 做一个简单的比较。GPU 与 CPU 的特点不同,GPU是一个简单的多核处理器,再结合CUDA之后,很有利于做并行运算。这是GPU的简单架构,当然也有很多有特色的东西,包括多个streaming multiprocessor,即流的多处理器,上面会包int F16,F32,F64的处理核。因此,GPU很适合做并行运算。
Deep learning 是并行运算很好的应用场景。这是一个简单的神经网络。可以与大家简单分享一下我们为何这么设计 deep learning 的网络。最早,是对于人脑假说性的理论模拟。70 年代,两位德国的生物学家解剖猫的大脑时,认为神经元是一层一层的,神经元之间有反射弧,他们假说当电流通过神经元之间的反射弧时,是一个激活的状态。他们提出了一套理论。之后,在DNN 架构出来之后,用 DNN 做具有特征的数据识别,有良好的效果。前层的 layer 是后层的浅层表现,因此带有 pattern 的语音、图像数据能够分类。在深度神经网络中,每一个节点都可以被模拟成计算核。GPU承担了每一个深度神经网络节点的计算,这也是 GPU 符合 DNN架构的原因。因此,GPU是线下训练的唯一选择。
Deep learning 其实包括两部分,第一部分是线下的训练,在云端或者加载GPU 的服务器端做训练;另一部分是做线上的推理。在线下训练,之后将训练好的模型放到线上去做推理,这是目前 deep learning 较为普适的模式。
Deep learning 的模式较为适合三类数据,computer vision 数据,语音数据,自然语言处理数据。这张PPT展现从 GPU 到 SDK 到 framework 到上层的应用。GPU带来的 deep learning 创造了全新的计算时代,也给初创公司带来很多机会。 AI的机会很多,在单一技术和组合式产品中,都有良好的市场。
我们可以从初创公司中看 deep learning 中有哪些机会:1)健康医疗,比如皮肤癌的研究在用 deep learning 做;2)零售,主要解决商品选择和支付问题。Focal 公司解决如何让传统零售业爆发活力的方案,核心技术是对物体的识别。客户进入实体店后,有类似于pad 的装置,用手推车进行购物,当挑选完商品后,不用结账,自动识别。同时,当商品从货架取下后,系统会自动补货。这个公司主要面向零售业的细分市场;3)金融。美国有一家投资公司,用了无人机和卫星图片,天天在美国上空扫庄稼地,利用 DNN 网络做图片识别,看看某几类庄稼的长势如何,并在期货交易所做对冲。可以通过历史数据比对,看是欠收还是多收;4)安全;5)IoT,比如机器人、无人机公司。目前有陪伴机器人,服务机器人,用无人机撒农药,这些都是针对特殊场景的很好的应用;6)无人驾驶,代表了 deep learning 技术与未来交通行业的结合;7)网络安全。有些公司用 deep learning 做对于病毒、恶意模式的判断,这些方案能够实时升级,判断新来的病毒属于哪一类。因此,AI的机会很多,在单一技术和组合式产品中,都有良好的市场。 (责任编辑:本港台直播) |