事实上,判别智慧城市的一大标准,即是各个领域决策层——尤其政府决策部门对于数据的驾驭程度。而欣喜的是,作为一次算法革命,深度学习以一种简练的网络模型得以解决过往极为复杂的社会难题,譬如交通。下面不妨从打车,公交,单车和地图等不同维度来拼接成“智慧交通”的全貌。 先说以滴滴为代表的出行平台。从几年前的“互联网+打车”到“用积累下来的数据提供更多价值”,滴滴算是移动互联网时代向人工智能时代跃迁的极佳样本。要知道,如今滴滴每日峰值订单超过2000 万单,每日处理数据超过 2000TB,相当于200 万部电影,海量数据包含路况,叫车信息,驾驶行为和车辆数据等多个维度。而无论是供需预测,路径规划还是平台派单,都是算法在起决定作用,毕竟在实时性的要求之下,其中变量已非人力调控可以满足,就像滴滴研究院院长何晓飞所言:“如果我们能搜集到更多的数据,未来有一天我们甚至能够知道每一位乘客,每一位司机的意愿。如果我们能够更加准确的甚至预测人的心理,那么我们可以把整个城市的交通管理的更加有秩序。” 再来看智能出行的基础:移动地图。事实上,开奖,少有人知的是,人工智能已渗透进百度地图的每一项基础业务,将其变成了一个基于大数据的人工智能出行平台。 官方数据显示,如今百度地图每日提供的位置服务超过720亿次,每日导航服务超过2亿公里,其自身也从单纯解决陌生地认路,演化到如今的智能导航。从出行前的时间预测和不同需求的个性化路线选择,到出行中精准的实时避堵路线推荐,它都以一种模拟“老司机”思维方式的思路:通过建立交通大脑,记忆数百亿次不同用户的出行旅程,将智慧“反哺”到每一次用户的具体出行之中。 其实不难发现,所谓新司机和老司机的差别,即是掌握的交通信息渠道和本地驾驶经验。而基于高性能流式计算,现在的百度地图可以做到分钟级别的路况更新,某个地方发生拥堵,不到一分钟就会被识别。此外,百度还可以精确推算全国路网的动态车流关系,实现未来一小时的路况预测,这种路况预测模型,包括了日期,时间,开奖,天气,路段路况和区域路况等多个维度,并辅之以棋局态势感知和区域路况态势感知的神经网络算法。 颇值一提的是,百度地图还通过聚合群体智慧,通过数据积累对本地经验路线了如指掌:通过人工智能对比用户路线和规划路线,找出差异,统计用户最多走法,如老司机一般得到局部经验路线,提供更优方案。而“老司机经验+个性化偏好”的智能化设定,无疑可以充分满足不同用户的差异化出行需求。总之,百度交通大脑的智慧源自每一位用户,而它又以更高智慧回馈给他们。 与政府打造智慧交通网 当然,在移动地图之外,人工智能同样可以用于如今炙手可热的共享单车身上。 我个人看来,更好地优化车辆配置,是需要共享单车平台共同面对,也是让交管部门较为疑虑的问题,诚如大数据专家涂子沛所言,共享单车首先要回答一个问题:一座城市究竟需要多少辆公共自行车?“要得到这个答案,必须结合城市人口、公交系统、私家车、道路等各项数据,进行计算。其中最重要的估算手段,是把城市里每一个人的家庭住址和其工作地点在数据库层面打通,从而掌握每一个人在城市中最日常的流动,即上班族的‘潮汐’特性。” 其实在人工智能处理交通数据这件事上,相比于共享单车,目前较为成熟的也许是并不惹眼的实时公交领域——要知道,每日至少两次的高频应用,让各种实时公交应用的累积数据并不亚于打车类软件:就像滴滴让人们习惯了“掐点”坐车,通过大数据与深度学习,实时公交应用也可以实现公交数据的实时整合,让用户能清晰获取每日赖以出行的公交车信息,如现在走到哪了,是否正在堵车,什么时候到站,甚至整条线路的实时通行状况,以此决定什么时候离开办公室或者家前去等车比较合适。毫无疑问,这种基于人工智能的资源匹配,对于城市公共交通出行效率,出行选择率以及城市承载率都意义深远,也势必得到决策部门的重视。 嗯,在人工智能的加持之下,科技企业与政府数据的共享,无疑是能否促进智慧交通网络的关键——要知道,中国各级政府掌握着全社会信息资源的80%,拥有海量且高质量的数据,当它们与科技企业的数据和人工智能相结合,产生的正向社会效应将难以估量。 (责任编辑:本港台直播) |