编者按:本文来自微信公众号,作者中国信息通信研究院与腾讯研究院AI联合课题组赵淑珏,中国信息通信研究院互联网法律研究中心研究员;36氪经授权发布。 近年来,智能医疗在国内外的发展热度不断提升。有人提出,“尽管安防和智能投顾最为火热,但 AI 在医疗领域可能会率先落地。”一方面,图像识别、深度学习、神经网络等关键技术的突破带来了人工智能技术新一轮的发展。大大推动了以数据密集、知识密集、脑力劳动密集为特征的医疗产业与人工智能的深度融合。另一方面,随着社会进步和人们健康意识的觉醒,人口老龄化问题的不断加剧,人们对于提升医疗技术、延长人类寿命、增强健康的需求也更加急迫。而实践中却存在着医疗资源分配不均,药物研制周期长、费用高,以及医务人员培养成本过高等问题。对于医疗进步的现实需求极大地刺激了以人工智能技术推动医疗产业变革升级浪潮的兴起。 “从全球创业公司实践的情况来看,智能医疗的具体应用包括洞察与风险管理、医学研究、医学影像与诊断、生活方式管理与监督、精神健康、护理、急救室与医院管理、药物挖掘、虚拟助理、可穿戴设备以及其他。”总结来看,目前人工智能技术在医疗领域的应用主要集中于以下五个领域: (一)医疗机器人 “机器人技术在医疗领域的应用并不少见,比如智能假肢、外骨骼和辅助设备等技术修复人类受损身体,医疗保健机器人辅助医护人员的工作等。”目前实践中的医疗机器人主要有两种: 一是,能够读取人体神经信号的可穿戴型机器人,也成为“智能外骨骼”; 二是,能够承担手术或医疗保健功能的机器人,以IBM开发的达·芬奇手术系统为典型代表。 (二)智能药物研发 智能药物研发是指将人工智能中的深度学习技术应用于药物研究,通过大数据分析等技术手段快速、准确地挖掘和筛选出合适的化合物或生物,达到缩短新药研发周期、降低新药研发成本、提高新药研发成功率的目的。人工智能通过计算机模拟,可以对药物活性、安全性和副作用进行预测。借助深度学习,人工智能已在心血管药、抗肿瘤药和常见传染病治疗药等多领域取得了新突破。在抗击埃博拉病毒中智能药物研发也发挥了重要的作用。 (三)智能诊疗 智能诊疗就是将人工智能技术用于辅助诊疗中,让计算机“学习”专家医生的医疗知识,模拟医生的思维和诊断推理,从而给出可靠诊断和治疗方案。智能诊疗场景是人工智能在医疗领域最重要、也最核心的应用场景。 (四)智能影像识别 智能医学影像是将人工智能技术应用在医学影像的诊断上。人工智能在医学影像应用主要分为两部分:一是图像识别,应用于感知环节,其主要目的是将影像进行分析,获取一些有意义的信息;二是深度学习,应用于学习和分析环节,通过大量的影像数据和诊断数据,不断对神经元网络进行深度学习训练,促使其掌握诊断能力。 (五)智能健康管理 智能健康管理是将人工智能技术应用到健康管理的具体场景中。目前主要集中在风险识别、虚拟护士、精神健康、在线问诊、健康干预以及基于精准医学的健康管理。 (1)风险识别:通过获取信息并运用人工智能技术进行分析,识别疾病发生的风险及提供降低风险的措施。 (2)虚拟护士:收集病人的饮食习惯、锻炼周期、服药习惯等个人生活习惯信息,运用人工智能技术进行数据分析并评估病人整体状态,协助规划日常生活。 (3)精神健康:运用人工智能技术从语言、表情、声音等数据进行情感识别。 (4)移动医疗:结合人工智能技术提供远程医疗服务。 (5)健康干预:运用 AI 对用户体征数据进行分析,定制健康管理计划。 智能医疗产业应用典型案例 (一)医疗机器人 1、智能外骨骼 俄罗斯ExoAtlet公司生产了两款“智能外骨骼”产品:ExoAtletⅠ和ExoAtlet Pro。前者适用于家庭,后者适用于医院。ExoAtletⅠ适用于下半身瘫痪的患者,只要上肢功能基本完整,它能帮助患者完成基本的行走、爬楼梯及一些特殊的训练动作。ExoAtlet Pro在ExoAtletⅠ的基础上包括了更多功能,如测量脉搏、电刺激、设定既定的行走模式等。 (责任编辑:本港台直播) |