作为一般规则,连接系统的端到端训练将优于具有多个部分的系统,因为具有端到端训练的组合系统允许每个部分独立适应任务。因此,如果与你的应用相关,考虑这些组合的部分是有用的。 各种学习器的集合(即装袋(bagging)、提升(boosting)、堆叠(stacking))也可以提高单个模型的性能。但是,这将需要你训练和维护集合中的所有学习器。如果你的性能目标值得这样做,那么值得测试一个集合的方法。 总结 当你在以前没有使用过深度学习的应用程序上实验时,atv,本报告为你提供了许多因素作为参考。并不是每个项目都与这些因素相关,但我希望本文能涵盖在项目期间你应该考虑的大多数因素。祝你成功。 本文为机器之心编译,转载请联系本公众号获得授权。 ?------------------------------------------------ 加入机器之心(全职记者/实习生):[email protected] 投稿或寻求报道:[email protected] 广告&商务合作:[email protected] (责任编辑:本港台直播) |