他表示自己一直以来都在研究一种定义智能的方法。他说,「我反对那种认为该问题无法解决的声音,我认为一定可以找到一种方法来定义智能。这个有界最优解的思想(idea of bounded optimality)简单说来就是你有一台机器且这台机器是有限的——有限的处理速度和储存空间。这意味着该机器只能运行有限的程序。在这个有限程序的集合之中,有一个或一些类别的程序会比其它程序效果更好;而这些程序正是我们的目标。」 此外,他还认为我们不应该将人工智能看作是一个算法的集合,「一个算法是针对某一特定问题的高度工程化的加工品。我们有非常高度工程化的双玩家游戏算法,但它们不能处理三人玩家游戏或双玩家偶然性游戏(比如五子棋),你需要一个全新的算法。但是人类不同。你可以学习国际象棋和五子棋。你不需要工程师来给你一个新的算法。因此,它一定是产生自一些更普遍的、控制思考和计算来快速得到优良决策的过程。」 除了在智能定义方面的思考,理性的元推理(meta-reasoning)技术也是他在 80 年代末和 90 年代初所进行的重要研究。 于是在思考了很多有关理性和智能的问题之后,Stuart Russell 联合 Peter Norvig 写出了上面所提到的著作《人工智能:一种现代方法》。在 Edge 的这篇文章中,Russell 还谈到了自己对专家系统、深度学习的看法,感兴趣的读者可观看以下视频: 学术影响力 Stuart Russell 目前是加州大学伯克利分校计算机科学教授兼加州大学旧金山分校的神经外科副教授,在这一部分,我们来了解一下他在计算机科学领域的研究。 首先让我们看两张图:
这张图是 Semantic Scholar 平台统计的 Russel 的论文引用情况,据该平台估计,Russell 的引用量大概是 31015 到 40731 之间。
这张图是 Russell 在 Semantic Scholar 平台上的学术影响力评估,可以看到他有 775 的高影响力。下面机器之心将从 Russell 最具影响力的几篇论文和最新发表的几篇论文这两个方面梳理其学术成果。 首先需要关注的是刑波、吴恩达、Russel 等人在 2002 年发表了一篇具有很高影响力的论文,该论文由 NIPS 所接收,并对后来的机器学习研究产生了深远的影响。
在该论文中,作者们发现许多算法严格依赖为输入提供优良的度量标准。例如,数据通常是通过所谓「合理」的方式进行聚类。因此对于需要良好度量的应用,他们希望能提供更加系统的方式规范化主观认为「类似」的方式。在这一篇论文中,作者们提出了一个算法,即在给定 n 维点的相似样本对情况下,学习一个 n 维距离度量(distance metric)来表征这些样本之间的关系。他们的算法基于将度量学习作为凸优化问题,并能得出有效的局部最优解。作者们还经验性地证明度量学习能显著提高聚类算法的性能。 紧接着,吴恩达和Stuart Russell 在 2000 年发表的一篇逆向强化学习算法(Algorithms for Inverse Reinforcement Learning)也有很大的影响力,该论文由 ICML 收录。除了该篇论文,同样于 2000 年发表的动态贝叶斯网络 Rao-Blackwellised 粒子滤波器也有深远的影响,该论文由 UAI 收录。
在本篇论文中,作者们先是介绍了粒子滤波器(Particle filters/PF)是用于动态贝叶斯网络(DBN)基于采样的推理/学习高效算法。然后他们展示了如何使用动态贝叶斯网络的结构提高粒子滤波的效率,即使用一种称之为 Rao-Blackwellisation 的技术。作者们的研究显示,Rao-Blackwellised 粒子滤波器(RBPF)能产生比标准 PF 更加精准的估计。 以上两篇是 Stuart Russell 参与发表影响比较深远,引用比较多的学术论文。而若要进一步了解 Russell 最近的研究动态,或者是最近发表过的论文,我们可以了解一下以下两篇论文。在这两篇论文中,Russell 扮演者导师的角色。 第一篇收录于 AAAI-2017 的论文,该论文讲述了一种用于时间模型中联合参数和状态估计的近似黑箱的在线算法。机器之心在 AAAI-2017 期间不仅对该论文做过详细报道,同时还对该论文的其他三位作者 Yusuf Erol、吴翼和李磊进行过专访()。 (责任编辑:本港台直播) |