(注:有变数,最近DeepMind最近新论文,他们宣称发明弹性权重巩固算法让 AI 拥有“记忆”,目前只能胜任特定领域一项任务的神经网络,开始能够习得“多项技能”) 此外深度学习往往侧重于学习输入感知与输出动作之间的映射(如用于做分类决策或者是围棋、Atari游戏上的移动的决策),对大脑功能的模拟,太过单一。 我们认为智能的本质是能够学习一个所处在世界的心理模型(mental model ),然后能否在这个模型上进行模拟(所谓想象力)。 深度学习是一个黑盒,我们设定了规则、输入了数据、训练出一个数据处理模型,但是并不了解数据处理在内部究竟如何进行。 那些在输入层、隐层、目标层之间连接的人工神经元发生的所有事情,目前根本无法知晓,所以也无法预测输出的结果:“我们看着Master走出了惊世骇俗的落子,看着它表演,它却不能告诉我们为什么要走这里。” 深度学习用大量的数据样本才能训练“泛化能力”,相比李世石,后者才是真正的天才——他用远远少于AlphaGo的训练样本,达到了接近AlphaGo的水平。 目前,人工神经网络仅仅是模拟大脑皮层的一小部分运行方式,而且是跨过了“认识世界”、“认识智能的本质” 这个阶段,直接到了“改变世界”。 基础理论并不成熟的工程应用,其实有着极大的隐患。 (责任编辑:本港台直播) |