我在最近的一篇文章《》专门总结一句话叫:技能的差别是可量化的,而认知的差别不可量化,是本质的。也就是说,你对一件事的观念和看法,决定着你对一件事情坚信的坚决度,以及能不能快速掌握信息并做出正确决定。这可能是人和人之间最大的差别。 认知是唯一的壁垒和成长的核心。猎豹抓住的上一个认知是中国互联网的国际化,那么,下一个机会是什么? 我看到的一个机会是深度学习。很多人会说,深度学习就是一个概念,你为什么要做深度学习?AI+时代,你有什么机会做出深度学习? 我想,从三个点来讲,为什么猎豹会有机会?当然,这三点的前提是——移动互联网本质的核心竞争已经结束。 第一,深度学习是算法革命。它把分散在各个领域的算法集中起来了。以前做语音的、做图像的、做无人驾驶的,做SLAM空间定位的,每一项都是一个专业,专业之间的算法差别也非常巨大。 但有一天,突然有一个东西出现了——叫深度学习,既可解决语音和图像问题,又可解决无人驾驶问题,可解决股票交易问题,还可解决下围棋的问题。人类历史上从未出现这么有魅力的东西。 随之而来的芯片革命也已经开始。去年年初,NVIDIA股价从20多亿美金,涨到年底100多亿美金。有一个NVIDIA工程师告诉我,2014年他们的CEO上台,在内部会议上说放弃Mobile CPU,全力以赴做GPU,整个公司都快炸锅了。但事实证明,他们在这里的深远布局,做得非常对。 为了解自动驾驶技术,我专门拜访过以色列的Mobile eye,前不久刚被英特尔收购。拜访完了之后,我认为,Mobile eye很快就会被NVIDIA颠覆掉了。因为Mobile eye所有的算法都是基于传统的CV算法。 包括谷歌的无人车也一样。我跟他们的创始员工聊了两个晚上。聊完以后,我买了两辆特斯拉。我的P90D跑在北京的五环上,已可放开双手,自由直播。而谷歌的无人车,还在那里,进行工程化演算。 你会发现,其实真正恐慌的应该是大公司。 因为他们积累了很多的技术,不管语音,还是视觉,在深度学习的冲击下,很多算法都被颠覆掉了。前不久,我见了一个国内某知名大公司实验室的负责人。他说他做了7年翻译,后看到谷歌一篇论文,突然发现,他原来做的翻译技术,全白积累了。 深度学习本质在降低技术壁垒。如果以前猎豹要出一个语音产品,我都不敢想象;或者猎豹自己的人脸识别,能做到全球排前几名,我也不敢想像。但近期,我会披露一些我们取得的一些成果。 我认为,越是大公司喊他们想做的,其实越是他们恐慌的。 第二,算法驱动变成数据驱动。每一篇论文对整个行业还是有推进作用,但由于基本算法模型的固定化,算法的驱动力,已大大降低。当然,我们也希望有一个算法神人,再发一篇论文,又把某个领域往前推进几十年。 但从整个动向来看,比如斯坦福大学教授李飞飞加入Google,都表明这场人工智能的革命,是以工业化和数据驱动为主的。数据量大了之后,产生的巨大推进量,可能远远胜于一篇论文。而大量的数据,同时也需要进行标注。 所以,大规模标注数据,成为核心竞争力。 这个概念有一点误导。比如你说话的声音,就像我现在说话,被上传到网上,它并不是人工智能可用的数据。你必须找人把声音数据里面的关键点标注出来,才是人工智能可用的有效数据。有一句话叫——人工智能今天还是,要多少智能,就需要多少人工。 第三,深度学习的机会在于和应用的结合,而不是技术输出。深度学习的核心是数据驱动。虽然你有模型调参,有自己的优势,但别人有更多的数据调参,很快拉平优势。未来深度学习会变成基础的技术运用,很多公司都会具备深度学习的研发能力。 (责任编辑:本港台直播) |