到底什么才是人工智能,怎样统一大家的意见,形成共识,为它定性?这在最近已经成为了科技圈里的热门话题。 一些人将 AI 看做是「认知计算」或者「机器智能」;而另外一些人将「AI」和「机器学习」给完全等同了起来。之所以会出现这么多的说法,主要是因为我们大家现在所说的「人工智能」,并不是某一个单纯的技术,它事实上已经成为了很多学科交叉后的领域:从机器人到机器学习,无所不包。 而人工智能的目的,其实现在绝大多数人已经达成了共识:开发一种能够执行任务,具备某种认知功能的机器,而这种执行任务的能力和认知功能,原本只属于人类智能的范畴当中的。为了达到这种状态,机器必须具备自我学习的能力。 在过去的十年时间里,AI 领域出现了何等惊人的进步,无论是无人自驾驶汽车的逐步成熟,还是语音识别技术的日趋完善。在这样的大背景之下,人工智能已经跳脱出了 20 年前固有的形象,第一次在公司和消费者面前生动立体了起来:它是真的可以影响到我们每天生活的啊! 确实,j2直播,现在各大媒体报刊都在用头条讲述人工智能领域出现的一举一动,详细阐述长期 AI 战略,但就在这样的火热环境下,大众仍然搞不清楚人工智能究竟是什么,同时,政府其实也在这方面表现的迟钝一些,到底技术自动化对于整个社会有着怎样的影响? 在这个前提下,本文向大家介绍人工智能领域下的六个细分领域,它们中任何一个现如今都是科研领域的大热门。所以,跳脱出人工智能这个笼统的范畴,转而研究这几个细分具体化的领域,也许才是更加靠谱的讨论方式。因为我们未来的数字产品和服务,都将被它们所左右。 在本文中,我会描述它们是什么,为什么重要,如今怎么来应用它们。最后,还会给出一个清单(当然不会是完全详尽的),上面列出来有关这些领域的科技公司。 1. 强化学习(Reinforcement learning)人们在学习一项新技能的时候,往往会有一个试错的过程,而 RL(强化学习)就是从这个模式中演化而来。在一个标准的 RL 设定中,软件的任务是观察在数字环境中当下所处的状态,并根据已经定好了的最终要达到的效果,采取行动来不断地接近这个目标。在这个不断接近的过程中,软件每执行一个动作,它都能从这个数字环境中得出一个判断:这个动作到底是推动了我向目标前进,还是阻碍了。 就在这种不断试探、确认、再试探的反复过程中,软件逐步找到最优策略和路径。 该领域之所以会引起大家的注意,是 Google DeepMind 在 Atari games 这个项目上应用了这项技术。而目前这项技术在现实中应用的最大价值竟然是给 Google 的数据中心降温! 数据中心中里众多服务器、存储设备、网络设备等等在 24 小时的运行着,同时散发着巨大的热量,采用常规的冷空调系统降温,不仅使整个数据中心的能耗增大,成本也会相应提高一大块。而 Google 在利用了 RL 技术可以使得降温成本下降 40%。 在一个可以被模拟的数字环境(比如视频游戏)中,应用 RL 工具的最大好处就是可以以很低的成本获取到机器学习的数据。这跟「监督式深度学习」(supervised deep learning)有着明显区别,后者获取数据的成本很高,在现实世界中应用的难度也较高。 应用:软件在迷宫中找路,或者是给无人自驾驶技术在城市街道上行驶提供技术支持,还比如在视频游戏中,atv,让 NPC 开始学习使用一些高度拟人化的行为。 处在这个领域里的公司:Google DeepMind, Prowler.io, Osaro, MicroPSI, Maluuba/Microsoft, NVIDIA, Mobileye, OpenAI. 2. 生成式对抗网络跟那些用来分类、或者执行「回归任务」的可识别人工智能相比,归纳模型基于某个学习对象,可以自发生成一个高度类似的图像。 就比如说,给软件看过一张人脸照片之后,它就能立刻生成一张类似的,机器合成的照片。这个技术的基础其实是:「生成式对抗网络」(generative adversarial networks) 在人工智能领域非常火爆,因为它给人们提供出来了一条直抵「非监控式机器学习」的路径。 生成式对抗网络(Generative Adversarial Nets,GAN)在 2016 年所召开的 NIPS(神经信息处理系统大会)上大放异彩,成为神经网络最受关注的技术之一,其实 GAN 的思想其实十分朴素:有一对模型,一个生成模型(G)生成假样本,最好是六耳猕猴,直叫众人真假难辨;一个判别模型(D)识别假样本,最好是火眼金睛,敢让赝品无所遁形。 (责任编辑:本港台直播) |