令人感到乐观的是,近几年来上述两派观点开始融合,实现了前所未有的效率提升:神经网络使算法具有了一定的直觉,能够根据当前的程序和数据猜测下一条语句,而搜索方法则提供了试错的机会,如果神经网络犯了错误,搜索框架能凭借记忆撤销错误的代码而转向别的方向思考。可以预见,随着这一结合打开新的思路,有利于将人工智能推向越来越广的应用场景。路漫漫其修远兮,我们离教会机器像人一样思考还有相当的距离。但是我们相信,人的智慧是无穷的。随着计算机科学、认知科学、生命科学等众多学科在此汇聚一堂,学者们在愈加深入地理解机器的同时,也会更多地了解我们自己,人机并进,勇攀科学的高峰。 如果你也对这个题目感兴趣,欢迎访问我们微软亚洲研究院机器学习组官方网页:https://www.microsoft.com/en-us/research/group/machine-learning-research-group/ 作者简介:
李亚韬现任微软亚洲研究院副研究员,在机器学习组从事分布式计算、图数据库、查询语言和人工智能方面的研究,研究兴趣包括分布式计算平台、知识图谱存储与查询方案,程序语言设计以及符号式机器学习等,是微软图引擎(Graph Engine)的主要设计者与开发者之一。 微软亚洲研究院机器学习组 微软亚洲研究院机器学习组一直致力于推动机器学习理论、算法和应用的学术前沿。我们的研究课题涉及机器学习和人工智能研究的各个方面,目前的研究重点为深度学习、增强学习、分布式机器学习和符号学习。在过去的十几年间,我们在顶级国际会议和学术期刊上发表了大量高质量论文,并把先进的机器学习技术应用到微软很多产品中解决实际问题。我们向开源社区贡献的微软分布式机器学习工具包 (DMTK) 和微软图引擎 (Graph Engine) 受到了开发社区的广泛关注。 机器学习组现招聘实习生,工作内容涉及深度学习、增强学习,分布式机器学习和符号学习等领域的研究及应用。具体工作内容根据个人兴趣和能力确定。要求热爱科研,对机器学习和人工智能研究充满兴趣;有较强的编程能力;有良好的沟通和团队协作能力;半年以上实习期。 感兴趣的同学可以下载并填写申请表(申请表链接: 点击阅读原文即可查看)并将其与完整的中英文简历(PDF/Word/Txt/Html形式)一同发送至:[email protected] 你也许还想看: 感谢你关注“微软研究院AI头条”,我们期待你的留言和投稿,共建交流平台。来稿请寄:[email protected]。微软小冰进驻微软研究院微信啦!快去主页和她聊聊天吧。 ,j2直播 (责任编辑:本港台直播) |