近二十年来,人格研究者关注与支持最多的人格定义是五因素模型,也常常被称之为“大五人格理论”。如图所示,大五人格包括了五个高度概括的人格因素:外向性 (Extraversion),尽责性 (Conscientiousness),神经质 (Neuroticism),随和型(Agreeableness)和开放性(Openness)。每个人格因素下还有一些细分特质(比如外向性下包括了是否经常参加活动、是否热心肠等)。这样,以后你在介绍朋友时,可以将他描述为“比较外向,但不太随和,可能比较情绪化的一个人”。方式很简单,但是描述很全面。实际上,整理这些词汇以及生成人格分类体系大多是依赖数据驱动,与计算机科学有很多很紧密的联系。那我们能不能自动的计算用户的大五人格呢?其实这也是有可能的。
在传统人格测量中,心理学家往往采用访谈和调查问卷这种形式,需要耗费大量的人力、财力和时间,受测者往往局限于几十人到几百人的规模,不可能实现大规模用户的测量。在座很多人可能都做过心理问卷调查,一般来说有上百道题。我不知道有多少人会认真填写这上百道题,可能大家都是一路打“三”——一到五分打个中间分,这样的结果其实没什么意义。这个工作的确非常麻烦,并且很多时候受访者自己其实也不知道该打几分。比如说,比较内向是打一还是二?其实都非常模糊。但是,心理学中还有一种人格测量的方法,叫做行为测量,通过观察个体的行为来进行测评。行为测量的理论基础是人格理论中的人类行为的一致性。既然人格能够解释人际之间的稳定的个体差异,那么个体行为表现出的差异性就跟个体的人格息息相关,因此通过观察个体行为使得预测人格变成了可能。只是在计算机技术得到广泛应用之前,心理学家很难收集到用户足够丰富的行为数据,因此数据的匮乏导致了行为测量在传统心理学中并没有被广泛采用。 然而,近年来,随着互联网、智能手机和各种传感设备的普及,用户的行为数据被广泛收集,再加上人工智能方法在建模用户方面的推进,使得通过行为数据测量人格的方法在计算机和心理学的交叉领域得到了快速的发展。我们的研究工作在此基础上更进一步,提出“人格推测模型”,利用社交媒体上的异构数据(比如头像照片、发表的文字、表情符使用以及社交关系等)来预测大五人格。比如说针对图片,我们可以采用深度残差网络的方式,算出语义表示,再将这些图片聚成某些类别,如卡通、自拍、合影、动植物。其实在这个过程中,我们仍然需要和心理学家合作。用基于行为数据的人工智能方法进行人格预测,首先需要收集少量用户的调查问卷结果作为标注。通过标注用户行为特点及人格特征,将它们之间的映射和联系输入模型中,以训练出一个好的模型。 (责任编辑:本港台直播) |