摘要:借由人类合作者大脑活动与机器人进行交流能够提供一种直接而且快速的反馈回路,对人类合作者来说,这一交流方式简单而且自然,从而使得根据直觉与机器人互动完成各种任务就不再是梦。这一论文探索了将误差相关电位(ErrP)应用到闭环机器人控制的方法。ErrP 信号对机器人任务特别有用,因为它们是大脑活动对预期之外误差做出反应的过程中自然出现的。我们解码了人类操作员实时控制一台 Rethink Robotics Baxter 机器人完成一个两项选择任务过程中的 ErrP 信号。我们也表明,利用这一闭环机器人任务期间生成的、与潜在误差相关的次要互动信号能够大大提升机器人的分类任务表现,这也暗示着新的让机器人获取人类反馈的手段。我们完整描述了整个系统的设计和应用,也展现了实时闭环以及开环控制实验结果,以及对主要(primary)和次要(secondary)ErrP 信号的离线分析。我们使用了一般人群的受试者完成实验任务,这些受试者之前未经训练或筛选。因此,j2直播,这一研究证实了 EGG 为基础的回路方法的潜力,有望实现无缝的机器人控制,也朝着实时直觉互动这一目标更进了一步。
图 1:基于实时解码观察者的 EEG 信号,机器人被告知它的首个动作是错误的,并且它会根据合适的物体类别做出正确选择
图 4:系统包含一个主要的实验控制器、Baxter 机器人、一个 EEG 获取与分类系统。一个 Arduino 系统转播控制器和 EEG 系统之间的信息。机械连接开关检测机械臂动作启动。
图 6:识别一次 EEG 数据缓冲中的 ErrP 的各种预处理和分类阶段。这个决策会立即影响到机器人的行为,而机器人的行为又会影响到 EEG 信号,从而形成反馈回路的闭环。 原文链接: ©本文为机器之心编译,转载请联系本公众号获得授权。 ?------------------------------------------------ 加入机器之心(全职记者/实习生):[email protected] 投稿或寻求报道:[email protected] 广告&商务合作:[email protected] (责任编辑:本港台直播) |