编译:刘小芹、张易、文强 【新智元导读】昨天凌晨谷歌正式发布了TensorFlow1.0版,改进了库中的机器学习功能,发布了XLA的实验版本,对Python和Java用户开放,提升了debugging,并且加入和改进了一些高级API,其中包括Keras。一系列新的改进,都会让目前这个最受欢迎的深度学习框架变得更快、更灵活、更实用。
谷歌TensorFlow 开发者大会演讲笔记。来源:Virginia Poltrack (@VPoltrack) | Twitter 在发布第一年,TensorFlow 已经帮助研究者、工程师、艺术家、学生以及其他许多人在许多领域取得了进展,从机器翻译到检测皮肤癌早期症状到预防糖尿病致盲。我们很高兴看到人们在超过6000个开源在线存储库项目中使用 TensorFlow。 今天,作为在山景城举办的首届年度TensorFlow开发者峰会的一部分,我们宣布正式发布 TensorFlow 1.0。它的新特性包括: 更快: TensorFlow 1.0 运行速度之快令人难以置信!XLA 为未来更多的性能改进奠定了基础,而且 tensorflow.org 新提供“tips & tricks”帮助用户微调模型以实现最大速度。我们将很快发布一些常用模型的更新实现,以展示如何充分利用TensorFlow 1.0:包括基于 8 GPU 对 Inception v3 实现7.3倍加速,以及基于 64 GPU 对分布式 Inception v3 训练实现58倍加速! 更灵活 TensorFlow 1.0 还加入了一些高级API,包括 tf.layers,tf.metrics 和 tf.losses 模块。此外,它还包含一个全新的 tf.keras 模块,能够与 Keras 完全兼容,Keras 是另一个流行的高级神经网络库。 更实用 TensorFlow 1.0 还提供稳定的 Python API,这让获取新功能更容易,而且不必担心破坏现有的代码。 TensorFlow 1.0的其他亮点: Python APIs已经更多地向Numpy转型。对于此类和其他向后兼容的以支持API稳定发展的更改,请使用我们的迁移指南和转换脚本。 Java和Go的实验API 高级API模块tf.layers,tf.metrics和tf.losses - 在纳入skflow和TF Slim之后从tf.contrib.learn中提取 发布了面向CPU和GPU的TensorFlow图形的特定领域编译器XLA的实验版本。 XLA正在迅速发展 - 预计在未来的发布中将看到更多的进展。 生成TensorFlow Debugger(tfdbg),一个用于调试实时TensorFlow程序的命令行界面和API。 用于对象检测和本地化的新Android demos以及基于摄像头的图片样式化。 安装改进:添加了Python 3 docker镜像,TensorFlow的pip包现在兼容PyPI。这意味着TensorFlow现在可以简单调用pip install tensorflow来安装。 我们很高兴地看到世界各地TensorFlow社区的发展速度。要了解有关TensorFlow 1.0及其使用方式的更多信息,可以在YouTube上观看TensorFlow Developer Summit talks,涵盖从高级API、TensorFlow(移动版)到新XLA编译器的最新更新,以及TensorFlow的令人激动的使用方法。 开发者大会的视频:https://www.youtube.com/watch?v=4n1AHvDvVvw TensorFlow生态系统持续成长,包括Fold 动态批处理和Embedding Projector等工具以及我们现有工具(如TensorFlow Serving)的更新。 我们非常感谢社区贡献者、教育工作者和将深度学习的最新进展带给每个人的研究人员 。 我们期待在如GitHub issues, Stack Overflow, @TensorFlow, the [email protected] group等群组与未来各论坛上与您的合作。 Keras 成为 TensorFlow 默认API 实际上,在上个月,Keras 的作者、谷歌 AI 研究员 Francois Chollet 就宣布:Keras 将会成为第一个被添加到 TensorFlow 核心中的高级别框架,变成 Tensorflow 的默认 API。 Keras 是一个高级别的 Python 神经网络框架,能在 TensorFlow 或者 Theano 上运行。此外,能用到 TensorFlow 上的还有一些高级别的 Python 神经网络框架,比如,TF-Slim,虽然它们发展更不完善,也不是 TensorFlow 的核心部分。 神经网络研究者 Rachel Thomas 在 fast.ai 上撰文介绍了这一消息,并写下了他使用TensorFlow 的心得体会: 他说,使用 TensorFlow 给我的感觉就是我还不够聪明,但是,在使用 Keras 的时候我会觉得神经网络要比我想象的简单。这是因为,TensorFlow 的 API 过于冗长和混乱,也是因为 Keras 拥有我体验过的最贴心的、最具表达力的 API。对我来说,在刚开始使用TensorFlow 受挫后就来公开批评它有点尴尬,它让人觉得沉重、不自然。当然,其中有我自己的原因。但是,Keras 和 Theano 确实证实了我的想法:tensors 和 神经网络不一定都是那么折磨人的。 (责任编辑:本港台直播) |