本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

【j2开奖】行为识别:让机器学会“察言观色”第一步(3)

时间:2017-02-07 00:08来源:报码现场 作者:本港台直播 点击:
欣赏完“网红”的魅力之后, atv直播 ,我们还是回归一下LSTM网络的本真吧。近年来,除了在网络结构上的探索,如何在网络设计中利用人的先验知识以及

欣赏完“网红”的魅力之后,atv直播,我们还是回归一下LSTM网络的本真吧。近年来,除了在网络结构上的探索,如何在网络设计中利用人的先验知识以及任务本身的特性来提升性能,也越来越多地受到关注。

着眼于人的行为动作的特点,我们将行为动作中关节点具有的共现性特性引入到LSTM网络设计中,将其作为网络参数学习的约束来优化识别性能。人的某个行为动作常常和骨架的一些特定关节点构成的集合,以及这个集合中节点的交互密切相关。如要判别是否在打电话,关节点“手腕”、“手肘”、“肩膀”和“头”的动作最为关键。不同的行为动作与之密切相关的节点集合有所不同。例如对于“走路”的行为动作,“脚腕”、“膝盖”、“臀部”等关节点构成具有判别力的节点集合。我们将这种几个关节点同时影响和决定判别的特性称为共现性(Co-occurrence)。

  

【j2开奖】行为识别:让机器学会“察言观色”第一步

图 2.1 基于LSTM的网络结构和共现性特性的利用。

在训练阶段,我们在目标函数中引入对关节点和神经元相连的权重的约束,使同一组的神经元对某些关节点组成的子集有更大的权重连接,而对其他节点有较小的权重连接,从而挖掘关节点的共现性。如图2.2所示,一个LSTM 层由若干个LSTM神经元组成,这些神经元被分为K组。同组中的每个神经元共同地和某些关节点有更大的连接权值(和某类或某几类动作相关的节点构成关节点子集),而和其他关节点有较小的连接权值。不同组的神经元对不同动作的敏感程度不同,体现在不同组的神经元对应于更大连接权值的节点子集也不同。在实现上,我们通过对每组神经元和关节点的连接加入组稀疏(Group Sparse)约束来达到上述共现性的挖掘和利用。

关节点共现性约束的引入,在SBU数据库上带来了3.4%的性能改进。通过引入Dropout技术,最终实现了高达90.4%的识别精度。

  

【j2开奖】行为识别:让机器学会“察言观色”第一步

图2.2 第一层的神经元(LSTM Neurons)和关节点连接的示意图。以第k组的神经元为例,第k组的神经元都同时对某几个关节点有着大的权重连接,而对其他关节点有着小的权重连接(在这里用未连接来示意)。

  3. 基于联合分类和回归的循环神经网络之于行为动作检测

  

【j2开奖】行为识别:让机器学会“察言观色”第一步

(图片来自网络)

前面讨论了对于时域分割好的序列的行为动作分类问题。但是想要计算机get到“察言观色”的技能并不那么容易。在实际的应用中多有实时的需求,而摄像头实时获取的视频序列并没有根据行为动作的发生位置进行预先时域分割,因此识别系统不仅需要判断行为动作的类型,也需要定位行为动作发生的位置,即进行行为动作检测。如图3.1所示,对于时间序列流,检测系统在每个时刻给出是否当前是行为动作的开始或结束,以及行为动作的类型信息。

  

【j2开奖】行为识别:让机器学会“察言观色”第一步

图3.1:行为动作检测示例。对于时间序列流,系统在每个时刻给出是否当前是行为动作的开始或结束,以及行为动作的类型信息。

  

【j2开奖】行为识别:让机器学会“察言观色”第一步

图3.2:基于滑动窗口的行为动作检测示意图,即每个时刻对固定或者可变的时域窗口内的内容进行判定。

在线(Online)的行为动作检测常常采用滑窗的方法,即对视频序列流每次观察一个时间窗口内的内容,对其进行分类。然而基于滑窗的方法常常伴随着冗余的计算,性能也会受到滑动窗口大小的影响。

对于骨架序列流,我们设计了基于循环神经网络LSTM的在线行为动作检测系统,在每帧给出行为动作判定的结果。LSTM的记忆性可以避免显式的滑动窗口设计。如图3.3所示,网络由LSTM 层和全连层(FC Layer)组成前端的网络Deep LSTM Network, 后面连接的分类网络 (Classification Network)用于判定每帧的动作类别,同时,回归网络 ( Regression Network )用于辅助确定动作行为的起止帧。图3.4展示了该回归子网络对起止点位置的目标回归曲线,即以起始点(结束点)为中心的高斯形状曲线。在测试时,当发现代表起始点的回归曲线到达局部峰值时,便可以定位为行为动作的起点位置。由于LSTM网络对时间序列处理的强大能力,加上联合分类回归的设计,联合分类和回归循环网络(JCR-RNN)实现了快速准确的行为动作检测。

  

【j2开奖】行为识别:让机器学会“察言观色”第一步

图3.3:用于在线行为动作检测的联合分类回归(Joint Classification-regression)循环网络框架。

  

【j2开奖】行为识别:让机器学会“察言观色”第一步

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容